ÌâÄ¿ÄÚÈÝ
10£®£¨1£©µ±µ¼Ìå°ôËÙ¶ÈΪvʱ£¬°ôËùÊܰ²ÅàÁ¦F°²´óСµÄ±í´ïʽ£®£¨ÓÃÌâÖÐ×Öĸ±íʾ£©
£¨2£©ef°ôÄÜ´ïµ½µÄ×î´óËÙ¶ÈvmµÄ±í´ïʽ£®£¨ÓÃÌâÖÐ×Öĸ±íʾ£©
£¨3£©ÈôÒÑÖªºã¶¨ÍâÁ¦F=1N£¬´Å¸ÐӦǿ¶ÈB=1T£¬ef°ôÄÜ´ïµ½µÄ×î´óËÙ¶Èvm=2m/s£¬µ±ef°ôÓɾ²Ö¹¿ªÊ¼Ô˶¯¾àÀëΪs=5.4mʱ£¨ËÙ¶ÈÒѾ´ïµ½2m/s£©£¬Çó´Ë¹ý³ÌÖÐÕû¸ö»ØÂ·²úÉúµÄ½¹¶úÈÈQ£®
·ÖÎö £¨1£©µ±µ¼Ìå°ôËÙ¶ÈΪvʱ£¬¸ù¾Ý·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂÉÇó½â¸ÐÓ¦µç¶¯ÊÆ£¬¸ù¾Ý±ÕºÏµç·µÄÅ·Ä·¶¨ÂÉÇó½âͨ¹ýµ¼Ìå°ôµÄµçÁ÷Ç¿¶È£¬¸ù¾Ý°²ÅàÁ¦µÄ¼ÆË㹫ʽÇó½â°ôËùÊܰ²ÅàÁ¦F°²´óСµÄ±í´ïʽ£»
£¨2£©µ±°²ÅàÁ¦µÈÓÚÀÁ¦Ê±£¬ËÙ¶È×î´ó£¬ÓÉ´ËÇó½â±í´ïʽ£»
£¨3£©ÔÈËÙÔ˶¯Ê±ÀÁ¦µÈÓÚ°²ÅàÁ¦£¬Çó½âÀÁ¦´óС£¬ÔÙ¸ù¾Ý¶¯Äܶ¨ÀíÇó½â²úÉúµÄ½¹¶úÈÈ£®
½â´ð ½â£º£¨1£©µ±µ¼Ìå°ôËÙ¶ÈΪvʱ£¬²úÉúµÄ¸ÐÓ¦µç¶¯ÊÆÎª£ºE=BLv£¬
ͨ¹ýµ¼Ìå°ôµÄµçÁ÷Ç¿¶ÈΪ£º$I=\frac{BLv}{r+\frac{R}{2}}=\frac{2BLv}{2r+R}$
°ôËùÊܰ²ÅàÁ¦F°²´óСµÄ±í´ïʽΪ£ºF°²=BIL=$\frac{2{B}^{2}{L}^{2}v}{2r+R}$£»
£¨2£©µ±°²ÅàÁ¦µÈÓÚÀÁ¦Ê±£¬ËÙ¶È×î´ó£¬ÔòÓУºF=$\frac{2{B}^{2}{L}^{2}{v}_{m}}{2r+R}$£»
½âµÃ£º${v}_{m}=\frac{F£¨2r+R£©}{2{B}^{2}{L}^{2}}$£»
£¨3£©ÔÈËÙÔ˶¯Ê±ÀÁ¦µÈÓÚ°²ÅàÁ¦£¬ÓУºF=$\frac{2{B}^{2}{L}^{2}{v}_{m}}{2r+R}$=$\frac{2¡Á{1}^{2}¡Á{1}^{2}¡Á2}{2¡Á1+2}N=1N$£¬
¸ù¾Ý¶¯Äܶ¨Àí¿ÉµÃ£ºFs-Q=$\frac{1}{2}m{v}_{m}^{2}$-0£¬
½âµÃ£ºQ=5.0J£®
´ð£º£¨1£©µ±µ¼Ìå°ôËÙ¶ÈΪvʱ£¬°ôËùÊܰ²ÅàÁ¦F°²=$\frac{2{B}^{2}{L}^{2}v}{2r+R}$£»
£¨2£©ef°ôÄÜ´ïµ½µÄ×î´óËÙ¶ÈvmµÄ±í´ïʽ${v}_{m}=\frac{F£¨2r+R£©}{2{B}^{2}{L}^{2}}$£»
£¨3£©´Ë¹ý³ÌÖÐÕû¸ö»ØÂ·²úÉúµÄ½¹¶úÈÈΪ5.0J£®
µãÆÀ ¶ÔÓÚµç´Å¸ÐÓ¦ÎÊÌâÑо¿Ë¼Â·³£³£ÓÐÁ½Ìõ£ºÒ»Ìõ´ÓÁ¦µÄ½Ç¶È£¬ÖصãÊÇ·ÖÎö°²ÅàÁ¦×÷ÓÃÏÂÎïÌåµÄƽºâÎÊÌ⣻ÁíÒ»ÌõÊÇÄÜÁ¿£¬·ÖÎöµç´Å¸ÐÓ¦ÏÖÏóÖеÄÄÜÁ¿ÈçºÎת»¯Êǹؼü£®
| A£® | Ò»¶¨´øÕýµç | B£® | Êܵ½µÄµç³¡Á¦F=mgtan¦È | ||
| C£® | µçÊÆÄÜÖð½¥¼õС | D£® | ¶¯ÄܼõС |
| A£® | ÎïÌ彫±£³ÖÔÈËÙÏ»¬ | B£® | ÎïÌå½«ÑØÐ±Ãæ¼ÓËÙÏ»¬ | ||
| C£® | ÎïÌå½«ÑØÐ±Ãæ¼õËÙÏ»¬ | D£® | ²»ÄÜÈ·¶¨ÎïÌåµÄÔ˶¯×´Ì¬ |
| A£® | µçѹ±£³Ö²»±ä£¬²åÈëµç½éÖÊ | B£® | µçѹ±£³Ö²»±ä£¬Ôö´óÕý¶ÔÃæ»ý | ||
| C£® | µçѹ±£³Ö²»±ä£¬¼õС¼«°å¼äµÄ¾àÀë | D£® | ÒÔÉÏ´ëÊ©¶¼²»ÐÐ |