ÌâÄ¿ÄÚÈÝ
10£®£¨1£©µ÷½ÚÐ±ÃæµÄÇã½Ç¦È£¬ÓÃÒÔÆ½ºâ»¬¿éµÄĦ²ÁÁ¦£®½«´øÓÐÕÚ¹âÆ¬µÄ»¬¿éÖÃÓÚÐ±ÃæÉÏ£¬ÇáÍÆ»¬¿é£¬Ê¹Ö®Ô˶¯£®¿ÉÒÔͨ¹ýÕÚ¹âÆ¬¾¹ýÁ½¹âµçÃŵÄʱ¼äÊÇ·ñÏàµÈÅжϻ¬¿éÊÇ·ñÕýºÃ×öÔÈËÙÔ˶¯£»
£¨2£©°´Éè¼ÆµÄ·½·¨°²×°ºÃʵÑéÆ÷²Ä£®½«»¬¿é´ÓÔ¶Àë¹âµçÃż׵ÄÉ϶ËÓɾ²Ö¹ÊÍ·Å£¬»¬¿éͨ¹ý¹âµçÃżס¢ÒÒʱ£¬ÕÚ¹âÆ¬µ²¹âµÄʱ¼ä·Ö±ðt1ºÍt2£¬Ôò»¬¿éͨ¹ý¼×¡¢ÒÒÁ½¹âµçÃÅʱµÄ˲ʱËÙ¶È·Ö±ðΪ$\frac{d}{{t}_{1}^{\;}}$ºÍ$\frac{d}{{t}_{2}^{\;}}$£»
£¨3£©ÓÃÌìÆ½²â³ö»¬¿é£¨º¬ÕÚ¹âÆ¬£©µÄÖÊÁ¿M¼°ÖØÎïµÄÖÊÁ¿m£¬ÓÃÃ׳߲â³öÁ½¹âµçÃżäµÄ¾àÀëx£¬±È½ÏmgxºÍ$\frac{1}{2}£¨M+m£©£¨\frac{d}{{t}_{2}^{\;}}£©_{\;}^{2}-\frac{1}{2}£¨M+m£©£¨\frac{d}{{t}_{1}^{\;}}£©_{\;}^{2}$µÄ´óС£¬ÔÚÎó²îÔÊÐíµÄ·¶Î§ÄÚ£¬ÈôÁ½ÕßÏàµÈ£¬¿ÉµÃ³öºÏÁ¦¶ÔÎïÌåËù×öµÄ¹¦µÈÓÚÎïÌ嶯Äܵı仯Á¿£®
·ÖÎö £¨1£©¸ù¾Ý$v=\frac{d}{t}$£¬ÒòÕÚ¹âÆ¬¼ä¾àÒ»¶¨£¬Ôò¿É¸ù¾Ýʱ¼äС³µÊÇ·ñÔÈËÙÖ±ÏßÔ˶¯£»
£¨2£©Ó¦ÓÃËٶȹ«Ê½Çó³ö»¬¿éͨ¹ý¹âµçÃŵÄ˲ʱËÙ¶È£»
£¨3£©Ó¦Óö¯Äܶ¨ÀíÇó³öʵÑéÐèÒªÑéÖ¤µÄ±í´ïʽ£»
½â´ð ½â£º£¨1£©»¬¿éÔÈËÙÔ˶¯Ê±£¬ÕÚ¹âÆ¬¾¹ýÁ½¹âµçÃŵÄʱ¼äÏàµÈ£»
£¨2£©ÕÚ¹âÆ¬¿í¶ÈdºÜС£¬¿ÉÈÏΪÆäƽ¾ùËÙ¶ÈÓ뻬¿éͨ¹ý¸ÃλÖÃʱµÄ˲ʱËÙ¶ÈÏàµÈ£¬¹Ê»¬¿éͨ¹ý¼×¡¢ÒÒÁ½¹âµçÃÅʱµÄ˲ʱËÙ¶È·Ö±ðΪºÍ£»
${v}_{¼×}^{\;}=\frac{d}{{t}_{1}^{\;}}$£¬${v}_{ÒÒ}^{\;}=\frac{d}{{t}_{2}^{\;}}$
£¨3£©±È½ÏÍâÁ¦×ö¹¦mgx¼°ÏµÍ³¶¯ÄܵÄÔöÁ¿$\frac{1}{2}$£¨M+m£©$[£¨\frac{d}{{t}_{2}^{\;}}£©_{\;}^{2}-£¨\frac{d}{{t}_{1}^{\;}}£©_{\;}^{2}]$ÊÇ·ñÏàµÈ£¬¼´¿É̽¾¿¡°¶¯Äܶ¨Àí¡±£®
¹Ê´ð°¸Îª£º£¨1£©ÕÚ¹âÆ¬¾¹ýÁ½¹âµçÃŵÄʱ¼äÊÇ·ñÏàµÈ¡¡
£¨2£©$\frac{d}{{t}_{1}^{\;}}$ $\frac{d}{{t}_{2}^{\;}}$
£¨3£©mgx¡¡ $\frac{1}{2}$£¨M+m£©$[£¨\frac{d}{{t}_{2}^{\;}}£©_{\;}^{2}-£¨\frac{d}{{t}_{1}^{\;}}£©_{\;}^{2}]$
µãÆÀ ±¾Ì⿼²éÁË¡°Ì½¾¿ºÏÁ¦×ö¹¦ÓëËٶȱ仯µÄ¹ØÏµ¡±£¬Ã÷È·Á˸ÃʵÑéµÄʵÑéÔÀíÒÔ¼°ÊµÑéÄ¿µÄ£¬¼´¿ÉÁ˽â¾ßÌå²Ù×÷µÄº¬Ò壬ÒÔ¼°ÈçºÎ½øÐÐÊý¾Ý´¦Àí£®
| A£® | ¼Ó5Vµçѹʱ£¬µ¼ÌåµÄµç×èÊÇ0.2¦¸ | |
| B£® | ¼Ó12Vµçѹʱ£¬µ¼ÌåµÄµç×èÊÇ8¦¸ | |
| C£® | ÓÉͼ¿ÉÖª£¬Ëæ×ŵçѹµÄÔö´ó£¬µ¼ÌåµÄµç×è²»¶Ï¼õС | |
| D£® | ¸ÃÔª¼þΪ·ÇÏßÐÔÔª¼þ£¬ËùÒÔÅ·Ä·¶¨Âɲ»ÊÊÓà |
| A£® | Îï¿éÔÚAµãµÄµçÊÆÄÜEPA=Q¦Õ | |
| B£® | Îï¿éÔÚAµãʱÊܵ½¹ìµÀµÄÖ§³ÖÁ¦´óСΪmg+$\frac{3\sqrt{3}kqQ}{8{h}^{2}}$ | |
| C£® | µãµçºÉ+Q²úÉúµÄµç³¡ÔÚBµãµÄµç³¡Ç¿¶È´óСEB=K$\frac{q}{{h}^{2}}$ | |
| D£® | µãµçºÉ+Q²úÉúµÄµç³¡ÔÚBµãµÄµçÊÆ¦ÕB=$\frac{m}{2q}$£¨v02-v2£©+¦Õ |
| A£® | E=2¦Ðk¦Ò£¨$\frac{{R}_{1}}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$-$\frac{{R}_{2}}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$£©x | B£® | E=2¦Ðk¦Ò£¨$\frac{1}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$-$\frac{1}{\sqrt{{x}^{2}+{R}_{2}^{2}}}$£©x | ||
| C£® | E=2¦Ðk¦Ò£¨$\frac{{R}_{1}}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$+$\frac{{R}_{2}}{\sqrt{{x}^{2}+{R}_{2}^{2}}}$£©x | D£® | E=2¦Ðk¦Ò£¨$\frac{1}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$+$\frac{1}{\sqrt{{x}^{2}+{R}_{2}^{2}}}$£©x |