ÌâÄ¿ÄÚÈÝ
10£®Èçͼ¼×Ëùʾ£¬Á½¿é×ã¹»´óµÄƽÐнðÊô°åˮƽ·ÅÖ㬼«°å¼ä¼ÓÓпռä·Ö²¼¾ùÔÈ¡¢´óÐ¡ËæÊ±¼äÖÜÆÚÐԱ仯¡¢·½ÏòÊúÖ±Ïòϵĵ糡£¬±ä»¯¹æÂÉÈçͼÒÒËùʾ£¬ÔÚt=0ʱ¿Ì´Ó¸º¼«°åÓɾ²Ö¹ÊÍ·ÅÒ»¸öÖÊÁ¿Îªm¡¢´øµçÁ¿Îªq£¨q£¼0£©µÄÖʵ㣮ÒÑÖªµç³¡Ç¿¶ÈE0=$\frac{mg}{q}$£¬Í¬Ê±t0ҲΪÒÑÖªÁ¿£®£¨1£©ÈôÖʵãÇ¡ºÃÔÚt=3t0ʱ¿Ìµ½´ïÕý¼«°å£¬ÊÔÇóÁ½¼«°åÖ®¼äµÄ¾àÀëd
£¨2£©ÔÚµÚ£¨1£©ÎʵÄÌõ¼þÏ£¬ÔÚ¼«°å¼äÔÙ¼ÓÉϿռä·Ö²¼¾ùÔÈ¡¢´óÐ¡ËæÊ±¼äÖÜÆÚÐԱ仯¡¢·½Ïò´¹Ö±Ö½ÃæÏòÍâµÄ´Å³¡£¬±ä»¯¹æÂÉÈçͼ±ûËùʾ£¬ÒÑÖª´Å¸ÐӦǿ¶ÈB0=$\frac{2¦Ðm}{q{t}_{0}}$£®ÊÔÇó£º
¢Ù´øµçÖʵ㾹ý¶à³¤Ê±¼äµ½´ïÕý¼«°å
¢Ú´øµçÖʵãÔÚ¼«°å¼ä×öÔ²ÖÜÔ˶¯µÄ×î´ó°ë¾¶
¢Û»³öÖʵãÔÚ¼«°å¼äÔ˶¯µÄ¹ì¼£Í¼£¨²»ÐèҪд¼ÆËã¹ý³Ì£©
·ÖÎö £¨1£©ÖʵãÔÚ0¡«t0ʱ¼äÄÚ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬ÔÚt0¡«2t0ʱ¼äÄÚ£¬ÊÜÁ¦Æ½ºâ£¬×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔÚ2t0¡«3t0ʱ¼äÄÚ£¬ÔÙ×ö¼ÓËÙ¶ÈΪgµÄÔȼÓËÙÖ±ÏßÔ˶¯£¬×÷³öËÙ¶Èʱ¼äͼÏߣ¬½áºÏͼÏßΧ³ÉµÄÃæ»ýÇó³öÁ½¼«°å¼äµÄ¾àÀ룮
£¨2£©´øµçÖʵãÔÚt0¡«2t0ʱ¼äºÍ3t0¡«4t0ʱ¼äÄÚ£¬ËùÊÜÖØÁ¦ºÍµç³¡Á¦Æ½ºâ£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦×÷Óã¬×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÆäËüʱ¼ä×öÔȼÓËÙÔ˶¯£¬½áºÏÖÜÆÚ¹«Ê½Çó³öÔ˶¯µÄʱ¼ä£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½Çó³öÔȼÓËÙÔ˶¯µÄʱ¼ä£®
×î´ó°ë¾¶Êܵ½Á½°åÖ®¼äµÄ¾àÀëµÄÓ°Ï죬Ê×ÏÈ¶ÔÆäÔ˶¯¹ì¼£½øÐзÖÎö£¬½áºÏ°å¼ä¾àÀ룬¿É·ÖÎö³öÁ£×ÓÄÜ×ö¼¸¸öÍêÕûµÄÔ²ÖÜÔ˶¯£¬´Ó¶øµÃÖª×öÔ²ÖÜÔ˶¯µÄ×î´ó°ë¾¶£®
½â´ð ½â£º£¨1£©ÖʵãÔÚ0¡«t0ʱ¼äÄÚ£¬a=$\frac{{F}_{ºÏ}}{m}$=$\frac{2q{E}_{0}-mg}{m}=g$£¬×ö³õËÙ¶ÈΪ0µÄÔȼÓËÙÖ±ÏßÔ˶¯
ÔÚt0¡«2t0ʱ¼äÄÚ£¬ÊÜÁ¦Æ½ºâ£¬×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔÚ2t0¡«3t0ʱ¼äÄÚ£¬ÔÙ×ö¼ÓËÙ¶ÈΪgµÄÔȼÓËÙÖ±ÏßÔ˶¯£¬v-tͼÏóÈçͼ£®![]()
ÓУºd=6¡Á$\frac{1}{2}a{{t}_{0}}^{2}=3g{{t}_{0}}^{2}$£®
£¨2£©¢Ù´øµçÖʵãÔÚt0¡«2t0ʱ¼äºÍ3t0¡«4t0ʱ¼äÄÚ£¬ËùÊÜÖØÁ¦ºÍµç³¡Á¦Æ½ºâ£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦×÷Óã¬×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÆäËüʱ¼ä×öÔȼÓËÙÔ˶¯£¬´øµçÖʵã×öÔÈËÙÔ²ÖÜÔ˶¯Ê±ÓУº$qv{B}_{0}=m\frac{{v}^{2}}{R}=mR\frac{4{¦Ð}^{2}}{{T}^{2}}$
ËùÒÔÓУºT=$\frac{2¦Ðm}{q{B}_{0}}={t}_{0}$£®
´øµçÖʵã×öÔȼÓËÙÖ±ÏßÔ˶¯Ê±ÓУº
d=$\frac{1}{2}a{t}^{2}=\frac{1}{2}g{t}^{2}$µÃ£¬t=$\sqrt{\frac{2d}{g}}=\sqrt{6}{t}_{0}$
ÓÉÓÚ3t0$£¾\sqrt{6}{t}_{0}£¾2{t}_{0}$£¬ËùÒÔÖʵãÔÚ¼«°å¼ä½«Íê³É0-t0ʱ¼äÄÚÔȼÓËÙÔ˶¯£¬t0-2t0ʱ¼äÄÚÔÈËÙÔ²ÖÜÔ˶¯£¬2t0-3t0ʱ¼äÄÚÔȼÓËÙÔ˶¯£¬3t0-4t0ʱ¼äÄÚÔ²ÖÜÔ˶¯£¬
$2{t}_{0}-\sqrt{6}{t}_{0}$ʱ¼äÄÚÔȼÓËÙÔ˶¯Ö±µ½Õý¼«°å£¬ÖʵãÔ˶¯×Üʱ¼äΪ${t}_{×Ü}=t+2T=\sqrt{6}{T}_{0}+2{t}_{0}$=$£¨2+\sqrt{6}£©{t}_{0}$£®
¢Ú´øµçÖʵã×öÔÈËÙÔ²ÖÜÔ˶¯Ê±ÓУºR=$\frac{mv}{q{B}_{0}}=\frac{v{t}_{0}}{2¦Ð}$£®
¿É¼ûÖʵãËÙ¶ÈÔ½´ó£¬Ô²¹ìµÀµÄ°ë¾¶Ò²Ô½´ó£¬¼´Öʵã¾Àú0¡«t0ʱ¼äºÍ2t0¡«3t0Á½¶Îʱ¼ä¼ÓËÙºóÔ²¹ìµÀ°ë¾¶×î´ó£®
ÖʵãÔȼÓËÙÔ˶¯Ê±£¬v=at=2gt0£¬
ËùÒÔÔ²¹ìµÀ×î´ó°ë¾¶ÎªR=$\frac{v{t}_{0}}{2¦Ð}=\frac{2g{{t}_{0}}^{2}}{2¦Ð}=\frac{g{{t}_{0}}^{2}}{¦Ð}$£®
ͬʱ£ºR+$\frac{1}{2}a£¨2{t}_{0}£©^{2}=g{{t}_{0}}^{2}£¨2+\frac{1}{¦Ð}£©£¼d$£¬ÖʵãûÓе½´ïÕý¼«°å£®
¢ÛÈçͼ ![]()
´ð£º£¨1£©ÇóÁ½¼«°åÖ®¼äµÄ¾àÀëΪ$3g{{t}_{0}}^{2}$£»
£¨2£©¢Ù´øµçÖʵ㾹ý$£¨2+\sqrt{6}£©{t}_{0}$ʱ¼äµ½´ïÕý¼«°å£»
¢Ú´øµçÖʵãÔÚ¼«°å¼ä×öÔ²ÖÜÔ˶¯µÄ×î´ó°ë¾¶Îª$\frac{g{{t}_{0}}^{2}}{¦Ð}$£»
¢ÛÈçͼËùʾ£®
µãÆÀ ´øµãÁ£×ÓÔÚ¸´ºÏ³¡ÖеÄÔ˶¯±¾ÖÊÊÇÁ¦Ñ§ÎÊÌâ
1¡¢´øµçÁ£×ÓÔڵ糡¡¢´Å³¡ºÍÖØÁ¦³¡µÈ¹²´æµÄ¸´ºÏ³¡ÖеÄÔ˶¯£¬ÆäÊÜÁ¦Çé¿öºÍÔ˶¯Í¼¾°¶¼±È½Ï¸´ÔÓ£¬µ«Æä±¾ÖÊÊÇÁ¦Ñ§ÎÊÌ⣬Ӧ°´Á¦Ñ§µÄ»ù±¾Ë¼Â·£¬ÔËÓÃÁ¦Ñ§µÄ»ù±¾¹æÂÉÑо¿ºÍ½â¾ö´ËÀàÎÊÌ⣮
2¡¢·ÖÎö´øµçÁ£×ÓÔÚ¸´ºÏ³¡ÖеÄÊÜÁ¦Ê±£¬Òª×¢Òâ¸÷Á¦µÄÌØµã£¬Èç´øµçÁ£×ÓÎÞÂÛÔ˶¯Óë·ñ£¬ÔÚÖØÁ¦³¡ÖÐËùÊÜÖØÁ¦¼°ÔÚÔÈÇ¿µç³¡ÖÐËùÊܵĵ糡Á¦¾ùΪºãÁ¦£¬¶ø´øµçÁ£×ÓÔڴų¡ÖÐÖ»ÓÐÔ˶¯ £¨ÇÒËٶȲ»Óë´Å³¡Æ½ÐУ©Ê±²Å»áÊܵ½ÂåÂØ×ÈÁ¦£¬Á¦µÄ´óÐ¡ËæËÙ¶È´óС¶ø±ä£¬·½ÏòʼÖÕÓëËÙ¶È´¹Ö±£¬¹ÊÂåÂØ×ÈÁ¦¶ÔÔ˶¯µçºÉÖ»¸Ä±äÁ£×ÓÔ˶¯µÄ·½Ïò£¬²»¸Ä±ä´óС£®
| A£® | ¡°Ì칬һºÅ¡±ÔڵȴýÆÚ¼ä£¬Ïà¶ÔµØÇòÊǾ²Ö¹µÄ | |
| B£® | ¡°ÉñÖ۰˺š±ÔÚ½øÐÐ×îºóÒ»´Î±ä¹ìʱӦÊ×ÏȼÓËÙ | |
| C£® | ¡°ÉñÖ۰˺š±ÔÚ½øÐÐ×îºóÒ»´Î±ä¹ìʱӦÊ×ÏȼõËÙ | |
| D£® | ¡°ÉñÖ۰˺š±×îºóÒ»´Î±ä¹ìÍê³ÉºóµÄËÙ¶È´óÓÚ±ä¹ìǰµÄËÙ¶È |
| A£® | a¡¢b¡¢cÈýµã´¦µçÊÆ¸ßµÍ¹ØÏµÊǦÕa=¦Õc£¾¦Õb | |
| B£® | ÖʵãÓÉaµ½c£¬µçÊÆÄÜÏÈÔö¼Óºó¼õС£¬ÔÚbµã¶¯ÄÜ×îС | |
| C£® | ÖʵãÔÚa¡¢b¡¢cÈýµã´¦µÄ¼ÓËÙ¶È´óС֮±ÈΪ2£º1£º2 | |
| D£® | Èô½«d´¦µÄµãµçºÉ¸ÄΪ+Q£¬¸Ã´øµçÖʵãµÄ¹ì¼£ÈÔ¿ÉÄÜΪÇúÏßabc |
| A£® | a¡¢b¡¢c¡¢dËĵ㳡ǿ·½ÏòÏàͬ£¬²¢ÇÒÓУºEa=Eb£¾Ec=Ed | |
| B£® | a¡¢bÁ½µãµçÊÆÏàµÈÇÒ´óÓÚc¡¢dÁ½µãµÄµçÊÆ | |
| C£® | ½«Ò»´øÕýµçµÄÁ£×Ó´ÓcµãÑØcadÕÛÏßÒÆ¶¯µ½dµã£¬µç³¡Á¦×öÕý¹¦ | |
| D£® | ½«Ò»´øÕýµçµÄÁ£×Ó£¨²»¼ÆÁ£×ÓÖØÁ¦£©ÓÉaµãÊÍ·Å£¬Á£×ÓÒ»¶¨ÑØÖ±ÏßÔ˶¯µ½b£¬ÇÒÁ£×Ó¶¯ÄÜÓëÁ£×ÓÔ˶¯Ê±¼äµÄƽ·½³ÉÕý±È |
| A£® | Óë°¼ÐÎÂ·ÃæÏà±È£¬Æû³µ¹ý͹ÐÎÂ·ÃæÊ±¸üÈÝÒ×±¬Ì¥ | |
| B£® | ÒԶ¹¦ÂÊÔ˶¯µÄÆû³µ£¬³µËÙÔ½¿ì£¬Ç£ÒýÁ¦Ô½´ó | |
| C£® | ÇóÆû³µ´Ó³É¶¼Ô˶¯µ½Ã¼É½µÄʱ¼äʱ£¬¿É½«Æû³µÊÓΪÖʵã | |
| D£® | Æû³µÀ×ÅÍϳµÔÚÆ½Ö±Â·ÃæÉϼÓËÙǰ½øÊ±£¬Ëü¶ÔÍϳµµÄÀÁ¦´óÓÚÍϳµ¶ÔËüµÄÀÁ¦ |
£¨1£©ÒÑÖªÁéÃôµçÁ÷¼ÆGµÄÂúÆ«µçÁ÷Ig=300¦ÌA£¬ÄÚ×èrg=500¦¸£¬ÈôҪʹ¸Ä×°ºóµÄµçѹ±íÂúÆ«µçѹΪ3V£¬Ó¦´®ÁªÒ»Ö»9.5k¦¸µÄ¶¨Öµµç×èR0£®
£¨2£©ÊµÑéÊÒÌṩÈçÏÂÆ÷²Ä£º
µçÁ÷±íA1£¨Á¿³Ì0.6A£¬ÄÚ×èԼΪ1.0¦¸£©
µçÁ÷±íA2£¨Á¿³Ì3A£¬ÄÚ×èԼΪ0.1¦¸£©
»¬¶¯±ä×èÆ÷R1£¨×î´ó×èÖµ10¦¸£¬¶î¶¨µçÁ÷2A£©
»¬¶¯±ä×èÆ÷R2£¨×î´ó×èÖµ2k¦¸£¬¶î¶¨µçÁ÷0.5A£©
Ϊ˳ÀûÍê³ÉʵÑ飬µçÁ÷±íӦѡÓÃ${A}_{1}^{\;}$£¬»¬¶¯±ä×èÆ÷Ó¦ Ñ¡ÓÃ${R}_{1}^{\;}$£®
£¨3£©Ä³´ÎʵÑéÊý¾ÝÈç±íËùʾ£®
| ²âÁ¿´ÎÊý | 1 | 2 | 3 | 4 | 5 | 6 |
| ¸Ä×°±íVµÄ¶ÁÊýU/V | 0.80 | 1.10 | 1.40 | 1.70 | 2.00 | 2.30 |
| µçÁ÷±íAµÄ¶ÁÊýI/A | 0.17 | 0.24 | 0.30 | 0.37 | 0.43 | 0.50 |
| A£® | ʱ¼äΪ$\sqrt{\frac{2H}{g}}$ | B£® | ʱ¼äΪ$\sqrt{\frac{2h}{g}}$ | ||
| C£® | Ë®Æ½Î»ÒÆÎªv0$\sqrt{\frac{2£¨H-h£©}{g}}$ | D£® | Ë®Æ½Î»ÒÆÎªv0$\sqrt{\frac{2£¨H+h£©}{g}}$ |