题目内容
14.求:(1)电动机的内阻;
(2)重物匀速上升时电动机的输入功率;
(3)重物匀速上升的速度大小(不计摩擦,g取10m/s2).
分析 根据闭合电路欧姆定律求出电路中的电流和电动机输入电压.电动机消耗的电功率等于输出的机械功率和发热功率之和,根据能量转化和守恒定律列方程求解重物匀速上升时的速度大小.
解答 解:(1)由题,电源电动势E=6V,电源内阻r=1Ω,当将重物固定时,电压表的示数为5V,则根据闭合电路欧姆定律得
电路中电流为I=$\frac{E-U}{r}$=$\frac{6-5}{1}$=1A
电动机的电阻RM=$\frac{U-IR}{I}$=$\frac{5-1×3}{1}$Ω=2Ω
(2)当重物匀速上升时,电压表的示数为U=5.5V,电路中电流为I′=$\frac{E-U′}{r}$=0.5A
电动机两端的电压为UM=E-I′(R+r)=6-0.5×(3+1)V=4V
故电动机的输入功率P=UMI′=4×0.5=2W
(3)根据能量转化和守恒定律得
UMI′=mgv+I′2R
代入解得,v=1.5m/s
答:(1)电动机的内阻为2Ω;
(2)重物匀速上升时电动机的输入功率为2W;
(3)重物匀速上升的速度大小为1.5m/s.
点评 本题是欧姆定律与能量转化与守恒定律的综合应用.对于电动机电路,不转动时,是纯电阻电路,欧姆定律成立;当电动机正常工作时,其电路是非纯电阻电路,欧姆定律不成立.
练习册系列答案
相关题目
16.
将一小球从高处水平抛出,最初2s内小球动能Ek随时间t变化的图象如图所示,不计空气阻力,取g=10m/s2.根据图象信息,不能确定的物理量是( )
| A. | 小球的质量 | B. | 小球的初速度 | ||
| C. | 2s 末重力对小球做功的功率 | D. | 小球抛出时的高度 |
2.
如图所示,将质量为m的小球用长为L的细线拴住,线的另一端固定在O点,将小球拉到与O等高的位置并使线刚好绷直,由静止开始释放小球,不计空气阻力和悬点的摩擦.下列说法正确的是( )
| A. | 小球在下落过程中机械能守恒 | |
| B. | 在落到最低点之前,小球重力的功率不断增大 | |
| C. | 小球落到最低点时刻,线的拉力与线的长短无关 | |
| D. | 在落到最低点之前,小球的重力一直做正功,线的拉力做负功 |
9.下列情况中加划线的物体,哪些可以看作质点( )
| A. | 比赛中体操运动员 | |
| B. | 研究公转规律时的地球 | |
| C. | 研究“神州”六号飞船绕地球运行的高度 | |
| D. | 研究火车通过一座铁路桥所用的时间 |
6.
一个圆球形薄壳容器所受重力为G,用一细线悬挂起来,如图所示.现在容器里装满水,若在容器底部有一个小阀门,当小阀门打开让水慢慢流出,在此过程中,系统(包括容器和水)的重心位置( )
| A. | 慢慢下降 | B. | 慢慢上升 | C. | 先下降后上升 | D. | 先上升后下降 |
3.
如图所示,一直流电动机与阻值R=9Ω的电阻串联在电源上,电源电动势E=30V,内阻r=1Ω,用理想电压表测出电动机两端电压U=10V,已知电动机线圈电阻RM=1Ω,则下列说法中正确的是( )
| A. | 通过电动机的电流为10A | B. | 通过电动机的电流小于10A | ||
| C. | 电动机的输出功率小于16W | D. | 电动机的输出功率为20W |
4.17世纪,意大利物理学家伽利略根据实验指出:在水平面上运动的物体之所以会停下,是因为受到摩擦阻力的缘故.这里的实验是指“伽利略斜面实验”,关于该实验,你认为下列陈述错误的是( )
| A. | 该实验为牛顿第一定律的提出提供了有力的实验依据 | |
| B. | 该实验否定了亚里士多德“力 是维持物体运动的原因”的错误概念 | |
| C. | 该实验是以可靠的事实为基础,经过抽象思维,抓住主要因素,忽略次要因素,从而更深刻地反映自然规律 | |
| D. | 该实验是一理想实验,是在思维中进行的,无真实的实验基础,故其结果是不可靠的 |