ÌâÄ¿ÄÚÈÝ
11£®£¨1£©ÈôijҺµÎa´ïµ½Ï¼«°åʱµÄËٶȸպÃΪÁ㣬ÇóÔÚ֮ǰÒѾ´ïµ½Ï¼¶°åµÄÒºµÎ¸öÊýN£»
£¨2£©ÇóÒºµÎa´Ó¿ªÊ¼ÏÂÂ䵽ϼ¶°åËù¾ÀúµÄʱ¼ä£®
·ÖÎö £¨1£©Ä³ÒºµÎa´ïµ½Ï¼«°åʱµÄËٶȸպÃΪÁ㣬¶Ô¸ÃÒºµÎÏÂÂäµÄÈ«³ÌÔËÓö¯Äܶ¨ÀíÁÐʽÇó½â£»
£¨2£©ÒºµÎÏÈ×ÔÓÉÂäÌåÔ˶¯ºóÔȼõËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â¼ÓËÙ¶È£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½ÁÐʽÇó½âʱ¼ä£®
½â´ð ½â£º£¨1£©ÒѾ´ïµ½Ï¼¶°åµÄÒºµÎ¸öÊýN£¬¹Ê´ËʱµçÈÝÆ÷µÄ´øµçÁ¿Îª£ºQ=Nq£»
µçѹ£ºU=$\frac{Q}{C}=\frac{Nq}{C}$£»
¶Ô¸ÃÒºµÎÏÂÂäµÄÈ«³ÌÔËÓö¯Äܶ¨Àí£¬ÓУº
mg£¨h+d£©-NqU=0
½âµÃ£º
N=$\frac{mgC£¨h+d£©}{N{q}^{2}}$
£¨2£©ÒºµÎÏÈ×ÔÓÉÂäÌåÔ˶¯ºóÔȼõËÙÖ±ÏßÔ˶¯£»
×ÔÓÉÂäÌåÔ˶¯µÄʱ¼ä£º${t}_{1}=\sqrt{\frac{2h}{g}}$£»
×î´óËÙ¶È£ºv=$\sqrt{2gh}$£»
ÔȼõËÙÖ±ÏßÔ˶¯µÄ¼ÓËÙ¶È£ºa=$\frac{qE-mg}{m}=\frac{q\frac{U}{d}-mg}{m}$=$\frac{N{q}^{2}}{mdC}-g$£»
¹Ê¼õËÙʱ¼ä£º${t}_{2}=\frac{\sqrt{2gh}}{a}$=$\frac{\sqrt{2gh}}{\frac{N{q}^{2}}{mdC}-g}$=$\frac{mdC\sqrt{2gh}}{N{q}^{2}-mdCg}$£»
¹ÊÒºµÎa´Ó¿ªÊ¼ÏÂÂ䵽ϼ¶°åËù¾ÀúµÄʱ¼ä£ºt=t1+t2=$\sqrt{\frac{2h}{g}}$+$\frac{mdC\sqrt{2gh}}{N{q}^{2}-mdCg}$£»
´ð£º£¨1£©ÈôijҺµÎa´ïµ½Ï¼«°åʱµÄËٶȸպÃΪÁ㣬ÔÚ֮ǰÒѾ´ïµ½Ï¼¶°åµÄÒºµÎ¸öÊýNΪ$\frac{mgC£¨h+d£©}{N{q}^{2}}$£»
£¨2£©ÒºµÎa´Ó¿ªÊ¼ÏÂÂ䵽ϼ¶°åËù¾ÀúµÄʱ¼äΪ$\sqrt{\frac{2h}{g}}$+$\frac{mdC\sqrt{2gh}}{N{q}^{2}-mdCg}$£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·Á£×ÓµÄÊÜÁ¦Çé¿öºÍÔ˶¯Çé¿ö£¬È»ºó½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢Ô˶¯Ñ§¹«Ê½ºÍ¶¯Äܶ¨ÀíÁÐʽÇó½â£¬²»ÄÑ£®
| A£® | µç³¡Ç¿¶È | B£® | µçÁ÷Ç¿¶È | C£® | µçÊÆÄÜ | D£® | µçÊÆ |
| A£® | mg+Fsin¦Á | B£® | mg-Fsin¦Á | C£® | ¦Ìmg | D£® | ¦ÌFsin¦Á |
| A£® | ´ÅÁ÷Ìå·¢µç»úµç¶¯ÊÆÎªBdv | |
| B£® | ´ÅÁ÷Ìå·¢µç»úµÄA°åµçÊÆµÍÓÚB°åµçÊÆ | |
| C£® | ABÁ½°å¼äµÄµçÊÆ²îΪBdv | |
| D£® | µç×èRÁ½¶ËµÄµçѹΪBdv |
ÁгµÊ±¿Ì±í
| Í£¿¿Õ¾ | µ½´ïʱ¿Ì | ¿ª³µÊ±¿Ì | Àï³Ì£¨×ÔÎ人Æð£©£¨km£© |
| Î人 | ©©©© | 18£º00 | 0 |
| ÔÀÑô | 19£º02 | 19£º10 | 215 |
| ³¤É³ | 19£º42 | 19£º50 | 362 |
| ¹ãÖÝ | 21£º58 | ©©©© | 966 |