ÌâÄ¿ÄÚÈÝ
7£®¢ÙÆø¸×ÄÚÆøÖùµÄ³¤¶È±äΪ¶àÉÙ£¿
¢Ú´Ë¹ý³ÌÖÐÆøÌåµÄÄÚÄܱ仯Á˶àÉÙ£¿
·ÖÎö ¢Ù¶ÔÆø¸×ÊÜÁ¦·ÖÎöÇó³öѹǿ£¬·ÖÎö״̬±ä»¯¹ý³Ì£¬·¢ÉúµÄÊǵÈѹ±ä»¯£¬¸ù¾Ý¸ÇÂÀÈø¿Ë¶¨ÂÉÖ±½ÓÇó½â£®
¢ÚÏÈÇó³öÍâ½ç¶ÔÆøÌåËù×öµÄ¹¦£¬ÔÙ¸ù¾ÝÈÈÁ¦Ñ§µÚÒ»¶¨Âɼ´¿ÉÇó½â£®
½â´ð ½â£º¢ÙÒÔÆø¸×ΪÑо¿¶ÔÏ󣬯ø¸×ÊÜÁ¦Æ½ºâ£¬ÓÐ${p}_{0}^{\;}S=pS+Mg$
¸×ÄÚÆøÌåѹǿ²»±ä·¢ÉúµÄÊǵÈѹ±ä»¯£¬ÓɸÇÂÀÈø¿Ë¶¨ÂÉÓÐ$\frac{LS}{{T}_{1}^{\;}}=\frac{L¡äS}{{T}_{2}^{\;}}$
½âµÃ$L¡ä=\frac{{T}_{2}^{\;}}{{T}_{1}^{\;}}L$
¢ÚÒòΪ${T}_{2}^{\;}£¼{T}_{1}^{\;}$£¬ËùÒÔL¡ä£¼L£¬ÆøÖù³¤¶È±ä¶Ì£¬Íâ½ç¶ÔÆøÌå×ö¹¦W=p¡÷V=p£¨L-L¡ä£©S=${£¨p}_{0}^{\;}S-mg£©L£¨1-\frac{{T}_{2}^{\;}}{{T}_{1}^{\;}}£©$
¸ù¾ÝÈÈÁ¦Ñ§µÚÒ»¶¨ÂÉ¡÷U=W-Q=$£¨{p}_{0}^{\;}S-mg£©L£¨1-\frac{{T}_{2}^{\;}}{{T}_{1}^{\;}}£©-Q$
´ð£º¢ÙÆø¸×ÄÚÆøÖùµÄ³¤¶È±äΪ$\frac{{T}_{2}^{\;}}{{T}_{1}^{\;}}L$
¢Ú´Ë¹ý³ÌÖÐÆøÌåµÄÄÚÄܱ仯ÁË$£¨{p}_{0}^{\;}S-mg£©L£¨1-\frac{{T}_{2}^{\;}}{{T}_{1}^{\;}}£©$-Q
µãÆÀ ±¾Ì⿼²éÆøÌåʵÑ鶨ÂɺÍÈÈÁ¦Ñ§µÚÒ»¶¨ÂÉ×ۺϣ¬Òª×¢ÒâÌâÄ¿Öеĵ¯»ÉÊÇÃÔ»óÈ˵ģ¬Ñо¿¶ÔÏóÑ¡ÔñÆø¸×À´½øÐзÖÎö£¬·¢ÉúµÄÊǵÈѹ±ä»¯£¬¸ù¾ÝʵÑ鶨Âɼ´¿ÉÇó½â£®
| A£® | B£® | C£® | D£® |
| A£® | a¹âÔÚ²£Á§×©Ä򵀮µÂʱÈÔÚ¿ÕÆøÖеÄС | |
| B£® | a¹âµÄƵÂʱÈb¹âµÄС | |
| C£® | a¹âµÄÕÛÉäÂÊ´óÓÚb¹âµÄÕÛÉäÂÊ | |
| D£® | ÔÚ²£Á§×©ÄÚa¹âµÄ´«²¥ËٶȱÈcС | |
| E£® | ÏàͬÌõ¼þϽøÐÐË«·ì¸ÉÉæÊµÑ飬a¹âµÄÌõÎÆ¼ä¾à±Èb¹âµÄС |
| A£® | ¹âÊøIÈÔΪ¸´É«¹â£¬¹âÊø¢ò¡¢¢óΪµ¥É«¹â | |
| B£® | ²£Á§¶Ô¹âÊø¢óµÄÕÛÉäÂÊ´óÓÚ¶Ô¹âÊø¢òµÄÕÛÉäÂÊ | |
| C£® | ¸Ä±ä¦Á½Ç£¬¹âÏߢñ¡¢¢ò¡¢¢óÈÔ±£³ÖƽÐÐ | |
| D£® | ͨ¹ýÏàͬµÄË«·ì¸ÉÉæ×°Ö㬹âÊø¢ò²úÉúµÄÌõÎÆ¿í¶ÈÒª´óÓÚ¹âÊø¢óµÄ | |
| E£® | ÔÚÕæ¿ÕÖУ¬¹âÊø¢òµÄËÙ¶ÈÒªµÈÓÚ¹âÊø¢óµÄËÙ¶È |