ÌâÄ¿ÄÚÈÝ
2£®XÖáÏ·½ÓÐÁ½¸ö¹ØÓÚÖ±Ïßx=-0.5a¶Ô³ÆµÄÑØXÖáµÄÔÈÇ¿µç³¡£¨´óСÏàµÈ£¬·½ÏòÏà·´£©£®Èçͼ¼×Ëùʾ£®Ò»ÖÊÁ¿Îªm£¬´øµçÁ¿Îª-qµÄÁ£×Ó£¨²»¼ÆÖØÁ¦£©£®ÒÔ³õËÙ¶ÈVÑØYÖáÕý·½Ïò´ÓPµã½øÈëµç³¡£¬ºó´ÓÔµãOÒÔÓë¹ýPµãʱÏàͬµÄËٶȽøÈë´Å³¡£®Á£×Ó¹ýOµãµÄͬʱÔÚMNºÍXÖáÖ®¼ä¼ÓÉϰ´Í¼ÒÒËùʾµÄ¹æÂÉ·¢ÉúÖÜÆÚÐԱ仯µÄ´Å³¡£¬¹æ¶¨´¹Ö±Ö½ÃæÏòÀïΪÕý·½Ïò£®ÕýÏò´Å³¡Óë·´Ïò´Å³¡µÄ´Å¸ÐӦǿ¶È´óСÏàµÈ£¬ÇÒ³ÖÐøµÄʱ¼äÏàͬ£®Á£×ÓÔڴų¡ÖÐÔ˶¯Ò»¶Îʱ¼äºóÁ£×Óµ½´ïQµã£¬²¢ÇÒËÙ¶ÈÒ²Óë¹ýPµãʱËÙ¶ÈÏàͬ£®ÒÑÖªP¡¢O¡¢QÔÚÒ»ÌõÖ±ÏßÉÏÓëˮƽ·½Ïò¼Ð½ÇΪ¦È£¬ÇÒP¡¢QÁ½µãºá×ø±ê·Ö±ðΪ-a¡¢a£®ÊÔ¼ÆË㣺£¨1£©µç³¡Ç¿¶ÈEµÄ´óС£»
£¨2£©´Å³¡µÄ´Å¸ÐӦǿ¶ÈBµÄ´óС£»
£¨3£©Á£×Ó´ÓPµ½QµÄ×Üʱ¼ä£®
·ÖÎö £¨1£©¸ù¾ÝÌâÒâ¿ÉÖª£¬´øµçÁ£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬ÇÒʱ¼äÏàµÈ£¬Ë®Æ½Î»ÒÆÎªa£¬ÊúÖ±·½ÏòÎ»ÒÆÎªatan¦È£¬¸ù¾ÝƽÅ×Ô˶¯µÄ»ù±¾¹«Ê½¼´¿ÉÇó½âÔ˶¯Ê±¼äºÍµç³¡Ç¿¶È£»
£¨2£©´øµçÁ£×ÓÔÚµÚÒ»ÏóÏ޵Ĵų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦½áºÏ¼¸ºÎ¹ØÏµÇó½â¼´¿É£»
£¨3£©·Ö±ðÇó³öÁ£×ÓÔڵ糡ºÍ´Å³¡ÖÐÔ˶¯µÄʱ¼ä£¬Á½¶Îʱ¼äÖ®ºÍ¼´Îª×Üʱ¼ä£®
½â´ð ½â£º£¨1£©´øµçÁ£×ÓÔÚµÚÈýÏóÏÞµÄÔ˶¯ÎªÁ½¸ö½×¶ÎµÄÔȱäËÙÇúÏßÔ˶¯£¬ÇÒʱ¼äÏàµÈ£¬ÉèΪt£¬
¶Ô¸ÃÔ˶¯·ÖÎöµÃ£º
Y·½Ïò£ºatan¦È=2Vt£¬
X·½Ïò£º$\frac{1}{2}a=\frac{qE}{2m}{t}^{2}$£¬
½âµÃ£º$E=\frac{4m{V}^{2}}{aq£¨tan{¦È£©}^{2}}$£¬t=$\frac{atan¦È}{2V}$£»
£¨2£©´øµçÁ£×ÓÔÚµÚÒ»ÏóÏ޵Ĵų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬Éè°ë¾¶ÎªR£¬ÈçͼËùʾ£¨Ö»»³öÒ»¸öÖÜÆÚµÄÇé¿ö£©£º![]()
Óɼ¸ºÎ¹ØÏµ¿ÉÖª£º
$\frac{a}{cos¦È}=4nRcos¦È$£¬£¨n=1£¬2£¬3¡£©
$BqV=m\frac{{V}^{2}}{R}$
½âµÃ£ºB=$\frac{4nmV£¨cos¦È£©^{2}}{qa}$£¬£¨n=1£¬2£¬3¡£©
£¨3£©´øµçÁ£×ÓÔڵ糡ÖÐÔ˶¯µÄʱ¼ä${t}_{µç}=2t=\frac{atan¦È}{V}$£¬
Ñо¿´øµçÁ£×ÓÔڴų¡ÖеÄÔÈËÙÔ²ÖÜÔ˶¯£¬Éèʱ¼äΪt´Å£¬Éèµ¥ÔªÔ²»¡¶ÔÓ¦µÄÔ²ÐĽÇΪ¦Á£¬Óɼ¸ºÎ¹ØÏµ¿ÉÖª£¬¦Á=¦Ð-2¦È£¬
Ôò${t}_{´Å}=2n\frac{£¨¦Ð-2¦È£©R}{V}=\frac{£¨¦Ð-2¦È£©a}{2V£¨cos¦È£©^{2}}$
ËùÒÔÁ£×Ó´ÓPµ½QµÄ×Üʱ¼ä${t}_{×Ü}={t}_{µç}+{t}_{´Å}=\frac{atan¦È}{V}+\frac{£¨¦Ð-2¦È£©a}{2V{£¨cos¦È£©}^{2}}$
´ð£º£¨1£©µç³¡Ç¿¶ÈEµÄ´óСΪ$\frac{4m{V}^{2}}{aq{£¨tan¦È£©}^{2}}$£»
£¨2£©´Å³¡µÄ´Å¸ÐӦǿ¶ÈBµÄ´óСΪ$\frac{4nmV£¨cos¦È£©^{2}}{qa}$£¬£¨n=1£¬2£¬3¡£©£»
£¨3£©Á£×Ó´ÓPµ½QµÄ×Üʱ¼äΪ$\frac{atan¦È}{V}+\frac{£¨¦Ð-2¦È£©a}{2V{£¨cos¦È£©}^{2}}$£®
µãÆÀ ±¾Ì⿼²éÁËÁ£×ÓÔڵ糡Óë´Å³¡ÖеÄÔ˶¯£¬Á£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯¡¢Ôڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬·ÖÎöÇå³þÁ£×ÓÔ˶¯¹ý³Ì£¬Ó¦ÓÃÀàÆ½Å×Ô˶¯¹æÂÉ¡¢Å£¶ÙµÚ¶þ¶¨Âɼ´¿ÉÕýÈ·½âÌ⣮
| A£® | 6.0¡Á1017m | B£® | 0.15m | C£® | 6.7m | D£® | 2.3¡Á109m |
| A£® | 4.9m | B£® | 9.8m | C£® | 14.7m | D£® | 19.6m |
| A£® | O¡¢A Á½µãµÄµç³¡Ç¿¶ÈEO£¼EA | B£® | µç³¡Ïߵķ½ÏòÑØxÖáÕý·½Ïò | ||
| C£® | µç×ÓÔÚO¡¢AÁ½µãµÄËÙ¶ÈvO£¾vA | D£® | µç×ÓÔÚO¡¢AÁ½µãµÄµçÊÆÄÜEPO£¾EPA |
| A£® | µçÈÝÆ÷´øµçºÉÁ¿µÄ¸Ä±äÁ¿´óСΪC¡÷U1 | |
| B£® | ¡÷U1£¼¡÷U2 | |
| C£® | $\frac{¡÷{U}_{1}}{¡÷I}$±ä´ó | |
| D£® | $\frac{¡÷{U}_{2}}{¡÷I}$²»±ä |