ÌâÄ¿ÄÚÈÝ
14£®£¨1£©ÀûÓüÆÊ±ÒÇÆ÷²âµÃ¹³ÂëAͨ¹ýÏÁ·ìºóµ½Â䵨ÓÃʱt1£¬Ôò¹³ÂëAͨ¹ýÏÁ·ìµÄËÙ¶ÈΪ$\frac{h_1}{t_1}$£¨ÓÃÌâÖÐ×Öĸ±íʾ£©£®
£¨2£©Èôͨ¹ý´Ë×°ÖÃÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ£¬»¹Ðè²â³ö»·ÐνðÊô¿éCµÄÖÊÁ¿m£¬µ±µØÖØÁ¦¼ÓËÙ¶ÈΪg£®ÈôϵͳµÄ»úеÄÜÊØºã£¬ÔòÐèÂú×ãµÄµÈʽΪ$mg{h_2}=\frac{1}{2}£¨{2M+m}£©{£¨{\frac{h_1}{t_1}}£©^2}$£¨ÓÃÌâÖÐ×Öĸ±íʾ£©£®
£¨3£©Îª¼õС²âÁ¿Ê±¼äµÄÎó²î£¬ÓÐͬѧÌá³öÈçÏ·½°¸£ºÊµÑéʱµ÷½Úh1=h2=h£¬²â³ö¹³ÂëA´ÓÊͷŵ½Â䵨µÄ×Üʱ¼ät£¬À´¼ÆËã¹³ÂëAͨ¹ýÏÁ·ìµÄËÙ¶È£¬ÄãÈÏΪ¿ÉÐÐÂð£¿Èô¿ÉÐУ¬Ð´³ö¹³ÂëAͨ¹ýÏÁ·ìʱµÄËٶȱí´ïʽ£»Èô²»¿ÉÐУ¬Çë¼òҪ˵Ã÷ÀíÓÉ£®¿ÉÐС¢$v=\frac{3h}{t}$£®
·ÖÎö £¨1£©ÓÉÆ½¾ùËٶȿɽüËÆ±íʾAµãµÄ˲ʱËÙ¶È£»
£¨2£©¸ù¾ÝʵÑé×°Öü°»úеÄÜÊØºã¶¨Âɿɵóö¶ÔÓ¦µÄ±í´ïʽ£»
£¨3£©ÕûÌåÔÚÖмäλÖÃÉÏ·½×öÔȼÓËÙÔ˶¯£¬ÔÚÏ·½×öÔÈËÙÔ˶¯£¬ÓÉÔ˶¯Ñ§¹«Ê½¿ÉÇóµÃÏ·½Ë²Ê±ËٶȵĴóС£®
½â´ð ½â£º£¨1£©ÔÚh1½×¶ÎÓÉÓÚ½ðÊô¿éC¾²Ö¹£¬¶øA£¬BÖÊÁ¿ÏàµÈ£¬ËùÒÔA£¬B¶¼ÊÇÔÈËÙÖ±ÏßÔ˶¯£¬ÓÉÔÈËÙÔ˶¯¹«Ê½¿ÉµÃ£º
v=$\frac{h_1}{t_1}$£»
£¨2£©ÓÉÌâÒâ¿ÉÖª£¬ÕûÌå¼õСµÄÖØÁ¦ÊÆÄܵÈÓÚ¶¯ÄܵÄÔö¼ÓÁ¿£»
¼´£º$mg{h_2}=\frac{1}{2}£¨{2M+m}£©{£¨{\frac{h_1}{t_1}}£©^2}$
£¨3£©ÕûÌåÔÚÉÏÒ»¶Î×öÔȼÓËÙÖ±ÏßÔ˶¯£¬ÔÚÏ·½×öÔÈËÙÔ˶¯£»Ôò¿ÉÖª£º
ÉèÖмäËÙ¶ÈΪv£¬ÔòÓУº
h=$\frac{v}{2}$t1£»
h=vt2£»
t1+t2=t
½âµÃ£ºt2=$\frac{t}{3}$£»
ÔòÏÂÂäµÄËÙ¶Èv=$\frac{h}{\frac{t}{3}}$=$\frac{3h}{t}$£»
¹Ê´Ë·½·¨¿ÉÐУ» ËÙ¶È $v=\frac{3h}{t}$£»
¹Ê´ð°¸Îª£º£¨1£©$\frac{h_1}{t_1}$£»£¨2£©$mg{h_2}=\frac{1}{2}£¨{2M+m}£©{£¨{\frac{h_1}{t_1}}£©^2}$
£¨3£©¿ÉÐУ»$v=\frac{3h}{t}$
µãÆÀ ±¾Ì⿼²éÑéÖ¤»úеÄÜÊØºã¶¨ÂɵÄʵÑ飬ҪעÒâÕýÈ··ÖÎöʵÑéÔÀí£¬Ã÷ȷʵÑé·½·¨£¬²ÅÄÜ׼ȷµÃ³ö¶ÔÓ¦µÄʵÑé½á¹û£®