ÌâÄ¿ÄÚÈÝ

4£®ÈçͼËùʾ£¬ÔÚË®Æ½ÃæÄÚµÄÖ±½Ç×ø±êϵxOyÖÐÓÐÒ»¹â»¬½ðÊôµ¼¹ìAOC£¬ÆäÖÐÇúÏßµ¼¹ìOAÂú×ã·½³Ìy=kx2£¬³¤¶ÈΪ$\sqrt{\frac{L}{k}}$µÄÖ±µ¼¹ìOCÓëxÖáÖØºÏ£¬Õû¸öµ¼¹ì´¦ÓÚ´¹Ö±Ö½Ãæ£¨Ë®Æ½Ãæ£©ÏòÀïµÄÔÈÇ¿´Å³¡ÖУ¬ÓÐÒ»³¤ÎªLµÄ½ðÊô°ô´ÓͼʾµÄλÖÿªÊ¼ÑØxÖáÕý·½ÏòÒÔËÙ¶ÈvµÄÔÈËÙÖ±ÏßÔ˶¯£¬ÒÑÖª½ðÊôÇòµ¥Î»³¤¶ÈµÄµç×èΪR0£¨µ¥Î»£º¦¸/m£©£¬³ý½ðÊô°ôµÄµç×èÍâÆäÓಿ·Öµç×è¾ù²»¼Æ£¬½ðÊô°ôÓëÁ½µ¼¹ìʼÖÕ½Ó´¥Á¼ºÃ£¬ÔòÔÚ½ðÊô°ô´Ó¿ªÊ¼Ô˶¯ÖÁACµÄ¹ý³ÌÖУ¨¡¡¡¡£©
A£®tʱ¿Ì»ØÂ·ÖеĸÐÓ¦µç¶¯ÊÆË²Ê±ÖµÎªe=Bkv2t2
B£®¸ÐÓ¦µçÁ÷Öð½¥¼õС
C£®±ÕºÏµç·ÏûºÄµÄµç¹¦ÂÊÖð½¥Ôö´ó
D£®Í¨¹ý½ðÊô°ôµÄµçºÉÁ¿Îª$\frac{B}{{R}_{0}L}$

·ÖÎö ¸ù¾Ý¸ÐÓ¦µç¶¯Êƹ«Ê½E=Blv£¬µ¼ÌåÓÐЧµÄÇи¶Èy=kx2£¬»ØÂ·µÄµç×èR=yR0£¬Óɹ¦Âʹ«Ê½P=$\frac{{E}^{2}}{R}$£¬·ÖÎö¹¦ÂÊÓëʱ¼äµÄ¹ØÏµ£¬È·¶¨±ä»¯Çé¿ö£¬ÔÙÓÉÅ·Ä·¶¨ÂÉ·ÖÎö¸ÐÓ¦µçÁ÷±ä»¯£®¸ù¾Ýq=ItÇó½âµçÁ¿£®

½â´ð ½â£ºA¡¢tʱ¿Ì¸ÐÓ¦µç¶¯ÊÆË²Ê±ÖµÎª e=Blv=Byv=Bkx2v£¬x=vt£¬ÔòµÃe=Bkv2t2£¬¹ÊAÕýÈ·£®
B¡¢»ØÂ·µç×èΪ R=yR0£¬Óɱպϵç·ŷķ¶¨Âɵ㺸ÐÓ¦µçÁ÷ I=$\frac{E}{R}$=$\frac{Byv}{y{R}_{0}}$=$\frac{Bv}{{R}_{0}}$£¬I²»±ä£®¹ÊB´íÎó£®
C¡¢µç·ÏûºÄµÄµç¹¦ÂÊP=I2R$\frac{k{B}^{2}{v}^{4}{t}^{2}}{{R}_{0}}$£¬¿ÉÖªtÔö´ó£¬P²»¶ÏÔö´ó£®¹ÊCÕýÈ·£®
D¡¢Í¨¹ý½ðÊô°ôµÄµçºÉÁ¿ q=It=$\frac{Bv}{{R}_{0}}$t
¶øt=$\frac{x}{v}$£¬y=L=kx2£¬ÔòµÃ q=$\frac{B}{{R}_{0}}$$\sqrt{\frac{L}{k}}$£®¹ÊD´íÎó£®
¹ÊÑ¡£ºAC£®

µãÆÀ ±¾Ì⿼²é×ۺϷÖÎöÎÊÌâµÄÄÜÁ¦£®¶ÔÓÚµçÁ÷±ä»¯Çé¿öµÄ·ÖÎö£¬²»Äܼòµ¥ÈÏΪµç¶¯ÊÆÔö´ó£¬µçÁ÷¾ÍÔö´ó£¬Æäʵµç×èÒ²Ôö´ó£¬µçÁ÷²¢²»±ä£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø