ÌâÄ¿ÄÚÈÝ

6£®ÔÚÑо¿Æ½Å×Ô˶¯µÄʵÑéÖУ¬¸ø³öÏÂÁÐÆ÷²Ä£º
A¡¢Æ½Å×Ô˶¯ÑÝʾÆ÷£¨°üÀ¨Æ½Ä¾°å£¬Ð±²Û¡¢ÖØ´¸¡¢Ë®Æ½Ì¨µÈ£©
B¡¢°×Ö½¡¢¸´ÖÆÖ½
C¡¢Ç¦±Ê¡¢¿Ì¶È³ß
D¡¢ÌìÆ½¡¢µ¯»É³Ó¡¢Ãë±í
ijͬѧ°´Õý³£²½Öè²Ù×÷ºó£¬µÃµ½µÄ¹ì¼£Èçͼ£¬OµãΪÅ׳öµã£¬ÒÑÖªÖØÁ¦¼ÓËÙ¶ÈΪg£¬ÓÃCµãµÄ×ø±êx3£¬y3±íʾ£®
£¨1£©Æ½Å×ʱµÄ³õËÙ¶ÈV0=${x}_{3}\sqrt{\frac{g}{2{y}_{3}}}$£»
£¨2£©¹ýCµãʱµÄ¼´Ê±ËÙ¶ÈVC=$\sqrt{\frac{g{{x}_{3}}^{2}}{2{y}_{3}}+2g{y}_{3}}$£»
£¨3£©Óëˮƽ·½ÏòµÄ¼Ð½Ç$arctan\frac{2{y}_{3}}{{x}_{3}}$£®
£¨4£©¡÷x=x4-x3=x3-x2£¬¡÷y2=y4-y3£¬¡÷y1=y3-y2£¬Óá÷x£¬¡÷y2£¬¡÷y1±íʾƽÅ×Ô˶¯Ê±³õËÙ¶ÈV0=$¡÷x\sqrt{\frac{g}{¡÷{y}_{2}-¡÷{y}_{1}}}$£»
£¨5£©ÊµÑéÖÐËù¸øµÄÆ÷²Ä²»ÐèÒªµÄÊÇD£®

·ÖÎö ƽÅ×Ô˶¯ÔÚÊúÖ±·½ÏòÉÏ×ö×ÔÓÉÂäÌåÔ˶¯£¬ÔÚˮƽ·½ÏòÉÏ×öÔÈËÙÖ±ÏßÔ˶¯£¬½áºÏÊúÖ±Î»ÒÆÇó³öÔ˶¯µÄʱ¼ä£¬¸ù¾ÝË®Æ½Î»ÒÆºÍʱ¼äÇó³ö³õËÙ¶È£®¸ù¾ÝËÙ¶Èʱ¼ä¹«Ê½Çó³öÊúÖ±·ÖËÙ¶È£¬½áºÏƽÐÐËıßÐζ¨ÔòËÙ¶ÈÓëˮƽ·½ÏòµÄ¼Ð½Ç£®
¸ù¾ÝÁ¬ÐøÏàµÈʱ¼äÄÚµÄÎ»ÒÆÖ®²îÊÇÒ»ºãÁ¿Çó³öÏàµÈµÄ¼ä¸ô¼ä¸ô£¬½áºÏË®Æ½Î»ÒÆºÍʱ¼ä¼ä¸ôÇó³ö³õËÙ¶È£®

½â´ð ½â£º£¨1£©¸ù¾Ý${y}_{3}=\frac{1}{2}g{{t}_{3}}^{2}$µÃ£¬${t}_{3}=\sqrt{\frac{2{y}_{3}}{g}}$£¬ÔòƽÅ×Ô˶¯µÄ³õËÙ¶È${v}_{0}=\frac{{x}_{3}}{{t}_{3}}$=${x}_{3}\sqrt{\frac{g}{2{y}_{3}}}$£®
£¨2£©CµãµÄÊúÖ±·ÖËÙ¶È${v}_{yc}=\sqrt{2g{y}_{3}}$£¬¸ù¾ÝƽÐÐËıßÐζ¨ÔòÖª£¬CµãµÄËÙ¶È${v}_{C}=\sqrt{{{v}_{0}}^{2}+{{v}_{yc}}^{2}}$=$\sqrt{\frac{g{{x}_{3}}^{2}}{2{y}_{3}}+2g{y}_{3}}$£®
£¨3£©¸ù¾ÝƽÐÐËıßÐζ¨ÔòÖª£¬$tan¦Á=\frac{{v}_{yc}}{{v}_{0}}=\frac{2{y}_{3}}{{x}_{3}}$£¬ÔòËÙ¶ÈÓëˮƽ·½ÏòµÄ¼Ð½ÇΪ$arctan\frac{2{y}_{3}}{{x}_{3}}$£®
£¨4£©¸ù¾Ý$¡÷{y}_{2}-¡÷{y}_{1}=g{T}^{2}$µÃ£¬T=$\sqrt{\frac{¡÷{y}_{2}-¡÷{y}_{1}}{g}}$£¬ÔòƽÅ×Ô˶¯µÄ³õËÙ¶È${v}_{0}=\frac{¡÷x}{T}=¡÷x\sqrt{\frac{g}{¡÷{y}_{2}-¡÷{y}_{1}}}$£®
£¨5£©¸ÃʵÑé²»ÐèÒª²âÁ¿Ð¡ÇòµÄÖÊÁ¿£¬Ôò²»ÐèÒªÌìÆ½¡¢µ¯»É³Ó£¬²»ÐèÒª¼Ç¼ʱ¼ä£¬Ôò²»ÐèÒªÃë±í£®¹ÊÑ¡£ºD£®
¹Ê´ð°¸Îª£º£¨1£©${x}_{3}\sqrt{\frac{g}{2{y}_{3}}}$£¬£¨2£©$\sqrt{\frac{g{{x}_{3}}^{2}}{2{y}_{3}}+2g{y}_{3}}$£¬£¨3£©$arctan\frac{2{y}_{3}}{{x}_{3}}$£¬£¨4£©$¡÷x\sqrt{\frac{g}{¡÷{y}_{2}-¡÷{y}_{1}}}$£¬£¨5£©D£®

µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀƽÅ×Ô˶¯ÔÚˮƽ·½ÏòºÍÊúÖ±·½ÏòÉϵÄÔ˶¯¹æÂÉ£¬½áºÏÔ˶¯Ñ§¹«Ê½ºÍÍÆÂÛÁé»îÇó½â£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø