ÌâÄ¿ÄÚÈÝ
6£®A¡¢Æ½Å×Ô˶¯ÑÝʾÆ÷£¨°üÀ¨Æ½Ä¾°å£¬Ð±²Û¡¢ÖØ´¸¡¢Ë®Æ½Ì¨µÈ£©
B¡¢°×Ö½¡¢¸´ÖÆÖ½
C¡¢Ç¦±Ê¡¢¿Ì¶È³ß
D¡¢ÌìÆ½¡¢µ¯»É³Ó¡¢Ãë±í
ijͬѧ°´Õý³£²½Öè²Ù×÷ºó£¬µÃµ½µÄ¹ì¼£Èçͼ£¬OµãΪÅ׳öµã£¬ÒÑÖªÖØÁ¦¼ÓËÙ¶ÈΪg£¬ÓÃCµãµÄ×ø±êx3£¬y3±íʾ£®
£¨1£©Æ½Å×ʱµÄ³õËÙ¶ÈV0=${x}_{3}\sqrt{\frac{g}{2{y}_{3}}}$£»
£¨2£©¹ýCµãʱµÄ¼´Ê±ËÙ¶ÈVC=$\sqrt{\frac{g{{x}_{3}}^{2}}{2{y}_{3}}+2g{y}_{3}}$£»
£¨3£©Óëˮƽ·½ÏòµÄ¼Ð½Ç$arctan\frac{2{y}_{3}}{{x}_{3}}$£®
£¨4£©¡÷x=x4-x3=x3-x2£¬¡÷y2=y4-y3£¬¡÷y1=y3-y2£¬Óá÷x£¬¡÷y2£¬¡÷y1±íʾƽÅ×Ô˶¯Ê±³õËÙ¶ÈV0=$¡÷x\sqrt{\frac{g}{¡÷{y}_{2}-¡÷{y}_{1}}}$£»
£¨5£©ÊµÑéÖÐËù¸øµÄÆ÷²Ä²»ÐèÒªµÄÊÇD£®
·ÖÎö ƽÅ×Ô˶¯ÔÚÊúÖ±·½ÏòÉÏ×ö×ÔÓÉÂäÌåÔ˶¯£¬ÔÚˮƽ·½ÏòÉÏ×öÔÈËÙÖ±ÏßÔ˶¯£¬½áºÏÊúÖ±Î»ÒÆÇó³öÔ˶¯µÄʱ¼ä£¬¸ù¾ÝË®Æ½Î»ÒÆºÍʱ¼äÇó³ö³õËÙ¶È£®¸ù¾ÝËÙ¶Èʱ¼ä¹«Ê½Çó³öÊúÖ±·ÖËÙ¶È£¬½áºÏƽÐÐËıßÐζ¨ÔòËÙ¶ÈÓëˮƽ·½ÏòµÄ¼Ð½Ç£®
¸ù¾ÝÁ¬ÐøÏàµÈʱ¼äÄÚµÄÎ»ÒÆÖ®²îÊÇÒ»ºãÁ¿Çó³öÏàµÈµÄ¼ä¸ô¼ä¸ô£¬½áºÏË®Æ½Î»ÒÆºÍʱ¼ä¼ä¸ôÇó³ö³õËÙ¶È£®
½â´ð ½â£º£¨1£©¸ù¾Ý${y}_{3}=\frac{1}{2}g{{t}_{3}}^{2}$µÃ£¬${t}_{3}=\sqrt{\frac{2{y}_{3}}{g}}$£¬ÔòƽÅ×Ô˶¯µÄ³õËÙ¶È${v}_{0}=\frac{{x}_{3}}{{t}_{3}}$=${x}_{3}\sqrt{\frac{g}{2{y}_{3}}}$£®
£¨2£©CµãµÄÊúÖ±·ÖËÙ¶È${v}_{yc}=\sqrt{2g{y}_{3}}$£¬¸ù¾ÝƽÐÐËıßÐζ¨ÔòÖª£¬CµãµÄËÙ¶È${v}_{C}=\sqrt{{{v}_{0}}^{2}+{{v}_{yc}}^{2}}$=$\sqrt{\frac{g{{x}_{3}}^{2}}{2{y}_{3}}+2g{y}_{3}}$£®
£¨3£©¸ù¾ÝƽÐÐËıßÐζ¨ÔòÖª£¬$tan¦Á=\frac{{v}_{yc}}{{v}_{0}}=\frac{2{y}_{3}}{{x}_{3}}$£¬ÔòËÙ¶ÈÓëˮƽ·½ÏòµÄ¼Ð½ÇΪ$arctan\frac{2{y}_{3}}{{x}_{3}}$£®
£¨4£©¸ù¾Ý$¡÷{y}_{2}-¡÷{y}_{1}=g{T}^{2}$µÃ£¬T=$\sqrt{\frac{¡÷{y}_{2}-¡÷{y}_{1}}{g}}$£¬ÔòƽÅ×Ô˶¯µÄ³õËÙ¶È${v}_{0}=\frac{¡÷x}{T}=¡÷x\sqrt{\frac{g}{¡÷{y}_{2}-¡÷{y}_{1}}}$£®
£¨5£©¸ÃʵÑé²»ÐèÒª²âÁ¿Ð¡ÇòµÄÖÊÁ¿£¬Ôò²»ÐèÒªÌìÆ½¡¢µ¯»É³Ó£¬²»ÐèÒª¼Ç¼ʱ¼ä£¬Ôò²»ÐèÒªÃë±í£®¹ÊÑ¡£ºD£®
¹Ê´ð°¸Îª£º£¨1£©${x}_{3}\sqrt{\frac{g}{2{y}_{3}}}$£¬£¨2£©$\sqrt{\frac{g{{x}_{3}}^{2}}{2{y}_{3}}+2g{y}_{3}}$£¬£¨3£©$arctan\frac{2{y}_{3}}{{x}_{3}}$£¬£¨4£©$¡÷x\sqrt{\frac{g}{¡÷{y}_{2}-¡÷{y}_{1}}}$£¬£¨5£©D£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀƽÅ×Ô˶¯ÔÚˮƽ·½ÏòºÍÊúÖ±·½ÏòÉϵÄÔ˶¯¹æÂÉ£¬½áºÏÔ˶¯Ñ§¹«Ê½ºÍÍÆÂÛÁé»îÇó½â£®
| A£® | Ò»Êøµ¥É«¹â¾ÓÉ¿ÕÆøÉäÈë²£Á§£¬ÕâÊø¹âµÄËٶȱäÂý£¬²¨³¤±ä¶Ì | |
| B£® | ±ä»¯µÄµç³¡Ò»¶¨»á²úÉú±ä»¯µÄ´Å³¡ | |
| C£® | ¹âµÄË«·ì¸ÉÉæÊµÑéÖУ¬Èô½ö½«ÈëÉä¹âÓɺì¹â¸ÄΪÂ̹⣬ÔòÏàÁÚÁÁÌõÎÆ¼ä¾àÒ»¶¨±äС | |
| D£® | Ïà¶ÔÂÛÈÏΪʱ¼äºÍ¿Õ¼äÓëÎïÖʵÄÔ˶¯×´Ì¬ÓÐ¹Ø |
| A£® | СÇòµÄËÙ¶ÈÒ»Ö±¼õС | B£® | СÇòÊܵ½µÄµ¯Á¦Ò»Ö±Ôö´ó | ||
| C£® | СÇòÊܵ½µÄºÏÍâÁ¦Ò»Ö±Ôö´ó | D£® | СÇòµÄ¼ÓËÙ¶ÈÏȼõСºóÔö´ó |
| A£® | ¼õСÆû³µµÄÖØÁ¦Æ½ÐÐÓÚÒýÇÅÇÅÃæÏòϵķÖÁ¦ | |
| B£® | ¼õСÆû³µ¶ÔÇÅÃæµÄѹÁ¦ | |
| C£® | Ôö´óÆû³µµÄÏ»¬Á¦ | |
| D£® | ¼õСÆû³µµÄÏ»¬Á¦ |
| A£® | ÇâÔ×Ó´Ón=6ԾǨÖÁn=2Äܼ¶Ê±·øÉä³öƵÂÊv1µÄ¹â×Ó£¬´Ón=5ԾǨÖÁn=2Äܼ¶Ê±·øÉä³öƵÂÊv2µÄ¹â×Ó£¬ÆµÂÊΪv1µÄ¹â×ÓµÄÄÜÁ¿½Ï´ó | |
| B£® | ÒÑÖªÓË238µÄ°ëË¥ÆÚΪ4.5¡Á109Ä꣬µØÇòµÄÄêÁäԼΪ45ÒÚÄ꣬ÔòÏÖÔÚµØÇòÉÏ´æÓеÄÓË238Ô×ÓÊýÁ¿Ô¼ÎªµØÇòÐγÉʱÓË238Ô×ÓÊýÁ¿µÄÒ»°ë | |
| C£® | ¦ÂË¥±äÄÜÊͷųöµç×Ó˵Ã÷ÁËÔ×ÓºËÖÐÓеç×Ó | |
| D£® | Ôں˷´Ó¦ÖУ¬ÖÊÁ¿Êغ㡢µçºÉÊýÊØºã |
| A£® | q1=2q2 | B£® | q1=3q2 | C£® | q1=4q2 | D£® | q1=9q2 |
| A£® | ÐÐÐÇÓëÌ«Ñô¼ä×÷ÓõĹæÂÉ£¬ÊǸù¾ÝÎïÌåµÄÔ˶¯Ì½¾¿ËüµÄÊÜÁ¦ | |
| B£® | ƽÅ×Ô˶¯µÄÑо¿ÊǸù¾ÝÎïÌåµÄÊÜÁ¦Ì½¾¿ËüµÄÔ˶¯ | |
| C£® | Ô²ÖÜÔ˶¯µÄÑо¿ÊǸù¾ÝÎïÌåµÄÔ˶¯Ì½¾¿ËüµÄÊÜÁ¦ | |
| D£® | Ô²ÖÜÔ˶¯µÄÑо¿ÊǸù¾ÝÎïÌåµÄÊÜÁ¦Ì½¾¿ËüµÄÔ˶¯ |
| A£® | ±»·â±ÕµÄ¿ÕÆøÄÚÄÜÔö´ó | |
| B£® | ±»·â±ÕµÄ¿ÕÆø·Ö×ÓµÄÎÞ¹æÔòÔ˶¯¸ü¾çÁÒÁË | |
| C£® | ±»·â±ÕµÄ¿ÕÆø·Ö×Ó¼äÒýÁ¦ºÍ³âÁ¦¶¼¼õС | |
| D£® | ±»·â±ÕµÄ¿ÕÆøµÄËùÓзÖ×ÓÔ˶¯ËÙÂʶ¼Ôö´ó | |
| E£® | ±»·â±ÕµÄ¿ÕÆø·Ö×Ó¼äÒýÁ¦ºÍ³âÁ¦¶¼Ôö´ó |