ÌâÄ¿ÄÚÈÝ
12£®£¨1£©¾ÉÏÍø²éÕÒÕâÊÇÖ»¹¤ÒµµçÀ׹ܣ¬ÓɵçÄÜת»¯³ÉÈÈÄܶøÒý·¢±¬Õ¨µÄ£¬ÀûÓÃÁ˵çÁ÷µÄÈÈЧӦ£®¸øÄãÒ»¸ö¶àÓõç±íÄã»áÑ¡ÔñÖ±Á÷µçѹ£¨Ö±Á÷µçÁ÷¡¢Ö±Á÷µçѹ¡¢µç×裩µ²À´ÅжÏËüÊÇ·ñΪµç³Ø£¬¿É±£Ö¤¼È°²È«ÓÖ·½±ã£®
£¨2£©¾ºËʵ¸ÃµçÀ×¹ÜÈ«µç×èֵΪ6¦¸£¬ÆäÖеçÈÈË¿×èֵΪ5¦¸£¬Òý½ÅÏß³¤2m£¬×èֵΪ1¦¸£¬µ±Í¨ÒÔ0.45AµçÁ÷ʱԼ6sÖÓ±¬Õ¨£¬ÈôÎâÓñ»ÓÃ5.4VµÄµçѹ¸øËü³äµçʱÀíÂÛÉÏÔ¼1.5sÖÓ±¬Õ¨£¨Î£ÏÕ£©£®
£¨3£©Ä³ÐËȤС×é·¢ÑïÎâÓñ»¾«Éñ£¬Ó÷ü°²·¨Éè¼ÆÁËһʵ¼Ê½Ï¾«È·²âÁ¿ÉÏÊöµ¥Ö»µçÀ׹ܵç×èµÄµç·£®×¼±¸ÁËÒÔÏÂʵÑéÆ÷²Ä£º
´ý²âµçÀ×¹ÜRx£¬Õ¨Ò©Í°£¨±£»¤×÷Ó㬷À±¬ÆÆ£©
µçÁ÷±íA1£ºÁ¿³Ì0.5A¡¢ÄÚ×èÔ¼0.5¦¸
µçÁ÷±íA2£ºÁ¿³Ì30mA¡¢ÄÚ×èÔ¼30¦¸
µçѹ±íV1£ºÁ¿³Ì30V¡¢ÄÚ×èÔ¼10k¦¸
µçѹ±íV2£ºÁ¿³Ì2V¡¢ÄÚ×èÔ¼3k¦¸
»¬¶¯±ä×èÆ÷R£º0¡«10¦¸ µç×èÏäR0£º0¡«999.9¦¸£¬0.1A
¸Éµç³ØE£ºµç¶¯ÊÆE=1.5V£¬ÄÚ×èrÔ¼0.1¦¸
µç¼üS¼°µ¼ÏßÈô¸É£¬
¢ÙÇëÉè¼ÆÒ»¸ö½ÏºÏÀíµÄµç·ÔÀíͼ£¬»Ôڹ涨·½¿òÄÚ£¬ÒªÇóͨ¹ýµçÀ׹ܵĵçÁ÷²»³¬¹ý27mA£¬µçѹÄÜ´ÓÁãµ÷½Ú£¬¾¡¿ÉÄܼõСÎó²î£®Çë±êÃ÷ËùÑ¡ÓÃÆ÷²Ä·ûºÅ£®
¢Úд³öRxµÄ¼ÆË㹫ʽRx=$\frac{U}{I}{-R}_{0}^{\;}$£®
·ÖÎö ±¾Ì⣨1£©Ó¦Ã÷È·Ó¦Óõçѹµ²À´²âÁ¿Î´ÖªµçѧԪ¼þ£¬²»ÄÜÓõçÁ÷µ²»òÅ·Ä·µµÀ´²âÁ¿£»Ì⣨2£©¸ù¾Ý½¹¶ú¶¨Âɼ´¿ÉÇó½â£»Ì⣨3£©¢ÙÊ×Ïȸù¾ÝµçÔ´µç¶¯ÊƵĴóСѡÔñ³öµçѹ±í£¬¸ù¾Ýµç·ҪÇóµÄ×î´óµçÁ÷¿ÉÖªÓ¦½«´ý²âµç×èÓëµç×èÏä´®Áª£¬ÔÙ¸ù¾ÝÇó³öµÄ´®Áªµç×èÅж¨µçÁ÷±íÓ¦ÓÃÍâ½Ó·¨£»¸ù¾Ýµç·ҪÇóµçѹ´ÓÁãµ÷¿ÉÖª±ä×èÆ÷Ó¦²ÉÓ÷Öѹʽ½Ó·¨£»Ìâ¢Ú¸ù¾ÝÅ·Ä·¶¨ÂÉÇó³ö´ý²âµç×è¼´¿É£®
½â´ð ½â£º£¨1£©Ó¦ÓöàÓõç±íµÄµçѹµ²À´ÅжÏδ֪װÖÃÊÇ·ñΪµç³Ø±È½Ï°²È«£¬ËùÒÔӦѡÔñµçѹµ²£»
£¨2£©ÉèÀíÂÛÉϾ¹ýtÃëʱ¼ä·¢Éú±¬Õ¨£¬¸ù¾ÝQ=${I}_{\;}^{2}Rt$£¬Ó¦ÓУº${0.45}_{\;}^{2}¡Á5¡Á6$=$£¨\frac{U}{6}£©_{\;}^{2}¡Á5t$£¬½âµÃt=1.5s£»
£¨3£©¢Ù¸ù¾ÝµçÔ´µÄµç¶¯ÊÆÎª1.5V¿ÉÖª£¬µçѹ±íӦѡÔñ${V}_{2}^{\;}$£»
¸ù¾ÝÌâĿҪÇóͨ¹ýµçÀ׹ܵĵçÁ÷²»³¬¹ý27mA¿ÉÖª£¬µçÁ÷±íӦѡÔñ${A}_{2}^{\;}$£»
¸ù¾ÝÅ·Ä·¶¨ÂÉ¿ÉÇó³ö´ý²âµç×èÁ½¶ËµÄ×î´óµçѹΪ${U}_{max}^{\;}$=${{I}_{A}^{\;}R}_{x}^{\;}$=27${¡Á10}_{\;}^{-3}¡Á6V$=0.16V£¬Ô¶Ð¡ÓÚµçѹ±íµÄÁ¿³Ì£¬ËùÒÔ´ý²âµç×èÓ¦Óëµç×èÏä${R}_{0}^{\;}$´®Áªºó½ÓÔÚµçѹ±íÁ½¶Ë£¬´Ëʱ´®ÁªºóµÄ´ý²âµç×è×î´óΪ${R}_{x}^{¡ä}$=$\frac{1.5}{27{¡Á10}_{\;}^{-3}}¦¸$=56¦¸£¬ÓÉÓÚÂú×㣬ËùÒÔµçÁ÷±íÓ¦ÓÃÍâ½Ó·¨£»
¸ù¾ÝʵÑéÒªÇóµçѹ´ÓÁãµ÷£¬ËùÒÔ±ä×èÆ÷Ó¦²ÉÓ÷Öѹʽ½Ó·¨£¬µç·ͼÈçͼËùʾ£º![]()
¢ÚÓɵç·ͼ¸ù¾ÝÅ·Ä·¶¨ÂÉÓ¦ÓУºU=I£¨${R}_{x}^{\;}{+R}_{0}^{\;}$£©£¬½âµÃ${R}_{x}^{\;}$=$\frac{U}{I}{-R}_{0}^{\;}$
¹Ê´ð°¸Îª£º£¨1£©Ö±Á÷µçѹ£»£¨2£©1.5£»£¨3£©¢ÙÈçͼ£¬¢Ú$\frac{U}{I}{-R}_{0}^{\;}$
µãÆÀ Ó¦Ã÷È·£º¢ÙӦͨ¹ý¹ÀËãÉè¼Æµç·Á¬½ÓÇé¿ö£»¢Úµ±´ý²âµç×èÂú×ã$\frac{{R}_{V}^{\;}}{{R}_{x}^{\;}}£¾\frac{{R}_{x}^{\;}}{{R}_{A}^{\;}}$ʱ£¬µçÁ÷±íÓ¦ÓÃÍâ½Ó·¨£¬Âú×ã$\frac{{R}_{V}^{\;}}{{R}_{x}^{\;}}£¼\frac{{R}_{x}^{\;}}{{R}_{A}^{\;}}$ʱ£¬µçÁ÷±íÓ¦ÓÃÄÚ½Ó·¨£»¢Ûµ±µç·ҪÇóµçѹ»òµçÁ÷´ÓÁãµ÷ʱ£¬±ä×èÆ÷Ó¦²ÉÓ÷Öѹʽ½Ó·¨£®
| A£® | a1£¾a2 | B£® | a1£¼a2 | C£® | a1=a2 | D£® | ²»ÄÜÈ·¶¨ |
| A£® | $\frac{{a}_{1}}{{a}_{2}}$=$\frac{r}{R}$ | B£® | $\frac{{a}_{1}}{{a}_{2}}$=$\frac{{R}^{2}}{{r}^{2}}$ | C£® | $\frac{{v}_{1}}{{v}_{2}}$=$\frac{R}{r}$ | D£® | $\frac{{v}_{1}}{{v}_{2}}$=$\sqrt{\frac{r}{R}}$ |
| A£® | °ÑÏßȦÔÑÊý¼õÉÙÒ»°ë | B£® | °ÑÏßȦֱ¾¶¼õÉÙÒ»°ë | ||
| C£® | °ÑÏßÈ¦Ãæ»ý¼õÉÙÒ»°ë | D£® | ¸Ä±äÏßȦÖáÊýÓë´Å³¡·½Ïò¼äµÄ¼Ð½Ç |