题目内容

如图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的距离为L.已知A、B的中心和O三点始终共线,A和B分别在O的两侧.引力常数为G.求两星球做圆周运动的周期.

【答案】分析:该题属于双星问题,它们之间的万有引力提供向心力,它们两颗星的轨道半径的和等于它们之间的距离.代入公式即可解答.
解答:解:A和B绕O做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力相等.且A和B和O始终共线,说明A和B有相同的角速度和周期.
则有:mω2r=Mω2R
又由已知:r+R=L
解得:

对A根据牛顿第二定律和万有引力定律得:
化简得   
答:两星球做圆周运动的周期:
点评:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网