ÌâÄ¿ÄÚÈÝ
5£®£¨1£©¸ù¾ÝͼÒÒÖÐͼÏߣ¨Å×ÎïÏߣ©£¬¼ÆËã0.2sʱľ¿éµÄËÙ¶È´óСv=0.2m/s£¬Ä¾¿é¼ÓËÙ¶Èa=1m/s2£»
£¨2£©ÈôÒѲâµÃľ¿éÏ»¬µÄ¼ÓËÙ¶ÈΪa£®ŽÔʼʱľ¿éµ½´«¸ÐÆ÷µÄ¾àÀëΪl£®ÒÑÖªµ±µØµÄÖØÁ¦¼ÓËÙ¶ÈΪg£¬ÎªÁ˲ⶨ¶¯Ä¦²ÁÒòÊý¦Ì£¬»¹Ö»Ðè²âÁ¿µÄÁ¿ÊÇAµãµ½Ë®Æ½ÃæµÄ¾àh£¨Ìî¡°Aµãµ½Ë®Æ½ÃæµÄ¾àh¡±»ò¡°Ä¾¿éµÄÖÊÁ¿¡±£©£»µÃ³ö¦ÌµÄ±í´ïʽÊǦÌ=$\frac{hg-la}{g\sqrt{{l}^{2}-{h}^{2}}}$£¨ÓöÔÓ¦ÎïÀíÁ¿µÄ·ûºÅ±íʾ£©
·ÖÎö £¨1£©ÓÉÓÚ»¬¿éÔÚÐ±ÃæÉÏ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬ËùÒÔij¶Îʱ¼äÄ򵀮½¾ùËٶȵÈÓÚÕâ¶Îʱ¼äÄÚÖеãʱ¿ÌµÄ˲ʱËÙ¶È£»¸ù¾Ý¼ÓËٶȵ͍Òåʽ¼´¿ÉÇó³ö¼ÓËÙ¶È£»
£¨2£©ÎªÁ˲ⶨ¶¯Ä¦²ÁÁ¦ÒòÊý¦Ì£¬»¹ÐèÒª²âÁ¿µÄÁ¿ÊÇľ°åµÄÇã½Ç¦È£¬´Ó¶ø¼´¿ÉÇó½â£®
½â´ð ½â£º£¨1£©¸ù¾Ýij¶Îʱ¼äÄ򵀮½¾ùËٶȵÈÓÚÕâ¶Îʱ¼äÄÚÖеãʱ¿ÌµÄ˲ʱËÙ¶È£¬
µÃ0.2sÄ©µÄËÙ¶ÈΪ£ºv=$\frac{0.32-0.24}{0.4}$m/s=0.2m/s£¬
0.4sÄ©µÄËÙ¶ÈΪ£ºv¡ä=$\frac{0.32}{0.8}$=0.4m/s£¬
Ôòľ¿éµÄ¼ÓËÙ¶ÈΪ£ºa=$\frac{v¡ä-v}{¡÷t}$=$\frac{0.4-0.2}{0.2}$=1.0m/s2£®
£¨2£©Ñ¡È¡Ä¾¿éΪÑо¿µÄ¶ÔÏó£¬Ä¾¿éÑØÐ±Ãæ·½ÏòÊÇÊÜÁ¦£ºma=mgsin¦È-¦Ìmgcos¦È
¶øÄ¾¿éµ½´«¸ÐÆ÷µÄ¾àÀëΪl£¬Ä¾¿éÏ»¬µÄ¼ÓËÙ¶ÈΪa£¬
ËùÒÔÒª²â¶¨Ä¦²ÁÒòÊý£¬»¹ÐèÒª²â³öAµãµ½Ë®Æ½ÃæµÄ¾àh£»
ÄÇôsin¦È=$\frac{h}{l}$£¬¶øcos¦È=$\frac{\sqrt{{l}^{2}-{h}^{2}}}{l}$
Òò´Ë¶¯Ä¦²ÁÒòÊýΪ¦Ì=$\frac{hg-la}{g\sqrt{{l}^{2}-{h}^{2}}}$
¹Ê´ð°¸Îª£º£¨1£©0.2£¬1.0£»£¨2£©Aµãµ½Ë®Æ½ÃæµÄ¾à£¬$\frac{hg-la}{g\sqrt{{l}^{2}-{h}^{2}}}$£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ£¬ÔÚij¶Îʱ¼äÄ򵀮½¾ùËٶȵÈÓÚÖмäʱ¿ÌµÄ˲ʱËÙ¶È£¬ÒÔ¼°»áͨ¹ýʵÑéµÄÔÀíµÃ³ö¶¯Ä¦²ÁÒòÊýµÄ±í´ïʽ£¬´Ó¶øÈ·¶¨ËùÐè²âÁ¿µÄÎïÀíÁ¿£®
| A£® | Ö»ÒªÊÇÊúÖ±ÏòÏ£¬a=gµÄÔȼÓËÙÖ±ÏßÔ˶¯¶¼ÊÇ×ÔÓÉÂäÌåÔ˶¯ | |
| B£® | ÔÚ¿ªÊ¼Á¬ÐøµÄÈý¸ö1 sÄÚͨ¹ýµÄÎ»ÒÆÖ®±ÈÊÇ1£º4£º9 | |
| C£® | ÔÚ¿ªÊ¼Á¬ÐøµÄÈý¸ö1 sÄ©µÄËÙ¶È´óС֮±ÈÊÇ1£º2£º3 | |
| D£® | ´Ó¿ªÊ¼Ô˶¯ÆðÏÂÂä4.9 m¡¢9.8 m¡¢14.7 m£¬Ëù¾ÀúµÄʱ¼äÖ®±ÈΪ1£º2£º3 |
| A£® | 2s | B£® | $\sqrt{2}$s | C£® | 1.5s | D£® | £¨$\sqrt{2}$-1£©s |
| A£® | Â䵨ËÙ¶ÈÊÇ10m/s | B£® | ÊúÖ±·½ÏòµÄÎ»ÒÆÊÇ10m | ||
| C£® | Â䵨ËÙ¶ÈÊÇ20m/s | D£® | ˮƽ·½ÏòµÄÎ»ÒÆÊÇ10m |
| A£® | $\frac{{v}^{2}r}{{R}^{2}}$ | B£® | $\frac{{v}^{2}{r}^{2}}{{R}^{2}}$ | C£® | $\frac{{v}^{2}R}{{r}^{2}}$ | D£® | $\frac{{v}^{2}R}{2{r}^{2}}$ |
| A£® | Ôö´óMNÁ½¼«°å¼äµÄµçÊÆ²î | |
| B£® | Ôö´óMNÁ½¼«°åµÄ´øµçÁ¿ | |
| C£® | ±£³Ö¼«°åµçÁ¿²»±ä£¬½«M°åÏòÓÒÆ½ÒÆÒ»Ð¡¶Î | |
| D£® | ±£³Ö¼«°åµçÁ¿²»±ä£¬½«M°åÏòÏÂÆ½ÒÆÒ»Ð¡¶Î |
| A£® | Íø¸ßh=$\frac{L}{4}$ | B£® | ·¢ÇòʱµÄˮƽ³õËÙ¶Èv0=l$\sqrt{\frac{g}{2h}}$ | ||
| C£® | ÇòÂäµ½Çǫ̀ÉÏʱµÄËÙ¶Èv=$\sqrt{2gh}$ | D£® | Çò´ÓA¡úBËùÓõÄʱ¼äl=4$\sqrt{\frac{2h}{g}}$ |