ÌâÄ¿ÄÚÈÝ
14£®£¨1£©ÇóÁ½ÇòÅöײǰ˲¼ä£¬Ð¡ÇòbµÄËÙ¶È´óС£»
£¨2£©ÇóÁ½ÇòµÄÖÊÁ¿Ö®±È£»
£¨3£©ÈôÒÔСÇòÔ˶¯µÄ×îµÍµãËùÔÚµÄË®Æ½ÃæÎªÁãÊÆÄÜÃæ£¬Çóa¡¢bÁ½Çò×é³ÉµÄϵͳÔÚÅöײǰºóµÄ»úеÄÜÖ®±È£®
·ÖÎö £¨1£©bÇòϰڹý³ÌÖУ¬Ö»ÓÐÖØÁ¦×ö¹¦£¬ÓÉ»úеÄÜÊØºã¶¨ÂÉÇó³öÅöǰbÇòµÄËÙ¶È£»
£¨2£©Á½ÇòÅöײ¹ý³ÌÖж¯Á¿Êغ㣬Óɶ¯Á¿Êغ㶨ÂÉÁз½³Ì£®ÅöºóÁ½ÇòÏò×ó°Ú¶¯¹ý³ÌÖУ¬ÕûÌåµÄ»úеÄÜÊØºã£¬ÓÉ»úеÄÜÊØºã¶¨ÂÉÁÐʽ£¬ÁªÁ¢¿ÉÇóµÃÁ½ÇòµÄÖÊÁ¿Ö®±È£»
£¨3£©¶ÔÓÚÁ½ÇòÅöײǰºó£¬ÓÉ»úеÄÜÊØºã¶¨ÂɵóöËüÃǵĻúеÄÜ£¬ÔÙÇóϵͳÔÚÅöײǰºóµÄ»úеÄÜÖ®±È£®
½â´ð ½â£º£¨1£©ÉèÇòaµÄÖÊÁ¿Îªm1£¬ÇòbµÄÖÊÁ¿Îªm2£®µ±Çòb°Úµ½×îµÍµã£¬µ«Î´ÓëÇòaÏàÅöʱµÄËÙ¶È´óСΪv£®Óɶ¯Äܶ¨ÀíµÃ
m2gL=$\frac{1}{2}{m}_{2}{v}^{2}$
½âµÃ v=$\sqrt{2gL}$
£¨2£©ÉèÅöºó˲¼äÁ½ÇòµÄ¹²Í¬ËÙ¶ÈΪv¡ä£®ÔÚÁ½Çò´ÓÅöײºóµ½Ïò×ó°Úµ½×î¸ßλÖõĹý³ÌÖУ¬Óɶ¯Äܶ¨ÀíµÃ
-£¨m1+m2£©gL£¨1-cos60¡ã£©=0-$\frac{1}{2}£¨{m}_{1}+{m}_{2}£©v{¡ä}^{2}$
½âµÃ v¡ä=$\sqrt{gL}$
¶ÔÓÚÅöײ¹ý³Ì£¬ÒÔˮƽÏò×óΪÕý·½Ïò£¬Óɶ¯Á¿Êغ㶨ÂɵÃ
m2v=£¨m1+m2£©v¡ä
½âµÃ $\frac{{m}_{1}}{{m}_{2}}$=$\sqrt{2}$-1
£¨3£©a¡¢bÁ½Çò×é³ÉµÄϵͳÔÚÅöײǰµÄ»úеÄÜΪ E1=m2gL
a¡¢bÁ½Çò×é³ÉµÄϵͳÔÚÅöײºóµÄ»úеÄÜΪ E2=m2gL£¨1-cos60¡ã£©
½áºÏ $\frac{{m}_{1}}{{m}_{2}}$=$\sqrt{2}$-1
½âµÃ $\frac{{E}_{1}}{{E}_{2}}$=$\sqrt{2}$
´ð£º
£¨1£©Á½ÇòÅöײǰ˲¼ä£¬Ð¡ÇòbµÄËÙ¶È´óСÊÇ$\sqrt{2gL}$£»
£¨2£©Á½ÇòµÄÖÊÁ¿Ö®±ÈΪ$\sqrt{2}$-1£»
£¨3£©a¡¢bÁ½Çò×é³ÉµÄϵͳÔÚÅöײǰºóµÄ»úеÄÜÖ®±ÈΪ$\sqrt{2}$£º1£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÊÇÒªÃ÷ȷСÇòÔÚϰڻòÉϰڹý³ÌÖлúеÄÜÊØºã£¬Åöײ¹ý³ÌÖж¯Á¿Êغ㣬Óɶ¯Äܶ¨Àí£¨»ò»úеÄÜÊØºã¶¨ÂÉ£©¡¢¶¯Á¿Êغ㶨Âɼ´¿ÉÕýÈ·½âÌ⣮
| A£® | ¦ÁÉäÏߵĹᴩ±¾Áì±È¦ÃÉäÏßÇ¿ | |
| B£® | ¦ÂÉäÏßΪÔ×ӵĺËÍâµç×ÓµçÀëºóÐγɵĵç×ÓÁ÷ | |
| C£® | ÓüÓΡ¢¼Óѹ»ò¸Ä±äÆä»¯Ñ§×´Ì¬µÄ·½·¨¶¼²»ÄܸıäÔ×ÓºËË¥±äµÄ°ëË¥ÆÚ | |
| D£® | Ô×Ӻ˾¹ýË¥±äÉú³Éкˣ¬Ôòк˵ÄÖÊÁ¿×ܵÈÓÚԺ˵ÄÖÊÁ¿ |
| A£® | С´¬¶ÉºÓµÄ×î¶Ìʱ¼äΪ20s | |
| B£® | ҪʹС´¬¶ÉºÓµÄÎ»ÒÆ×î¶Ì£¬Ôò´¬ÉíÓëºÓ°¶ÉÏÓÎÓ¦´¹Ö± | |
| C£® | ´¬¶ÉºÓµÄ×îÐ¡Î»ÒÆÎª100m | |
| D£® | ´¬¶ÉºÓµÄ×îÐ¡Î»ÒÆÎª125m |
| A£® | ´óСΪ80N£¬·½ÏòˮƽÏò×ó | B£® | ´óСΪ80N£¬·½ÏòˮƽÏòÓÒ | ||
| C£® | ´óСΪ20N£¬·½ÏòˮƽÏò×ó | D£® | ´óСΪ20N£¬·½ÏòˮƽÏòÓÒ |
| A£® | ²éµÂÍþ¿ËÓæÁÁ£×Óºä»÷îëºË£¬·¢ÏÖÁËÖÐ×Ó | |
| B£® | ÆÕÀÊ¿ËÌá³öÁ˹â×Ó˵£¬²¢½âÊÍÁ˹âµçЧӦÏÖÏó | |
| C£® | ¬ɪ¸£Í¨¹ý¦ÁÁ£×ÓÉ¢ÉäʵÑ飬֤ʵÁËÔÚÔ×ÓºËÄÚ´æÔÚÖÊ×Ó | |
| D£® | ±´¿ËÀÕ¶ûͨ¹ý¶ÔÌìÈ»·ÅÉäÏÖÏóµÄÑо¿£¬·¢ÏÖÁËÔ×ÓÖдæÔÚµÄÔ×ÓºË |