题目内容
11.一种氢气燃料的汽车,质量为m=2.0×103kg,发动机的额定输出功率为P额=40kW,行驶在平直公路上时所受阻力恒为车重的0.1倍.若汽车从静止开始先匀加速启动,加速度的大小为a=1.0m/s2.达到额定输出功率后,汽车保持功率不变又加速行驶了s=800m,直到获得最大速度后才匀速行驶.(g取10m/s2).试求:(1)汽车的最大行驶速度;
(2)汽车匀加速阶段结束时的速度;
(3)汽车以额定功率又加速了多长时间?
分析 (1)当牵引力与阻力相等时,速度最大,根据P=Fv求出最大速度的大小;
(2)根据牛顿第二定律求出牵引力的大小,结合P=Fv求出匀加速运动的末速度;
(3)根据动能定理求出汽车以额定功率加速的时间.
解答 解:(1)当牵引力与阻力相等时,速度最大,则${v}_{max}=\frac{P}{f}=\frac{40000}{0.1×20000}=20m/s$;
(2)根据牛顿第二定律得:$a=\frac{F-f}{m}=\frac{{\frac{p}{v}-f}}{m}=1$m/s2
带入数据得v=10m/s
(3)以额定功率加速的过程中,根据动能定理得:$\frac{1}{2}m{v^2}_{max}-\frac{1}{2}m{v^2}=pt-fs$
带入数据得t=47.5s
答:(1)汽车的最大行驶速度为20m/s;
(2)汽车匀加速阶段结束时的速度为10m/s;
(3)汽车以额定功率又加速47.5s时间.
点评 解决本题的关键知道汽车在整个过程中的运动规律,知道匀加速运动的最大速度和最终匀速直线运动速度的区别,知道牵引力等于阻力时,速度最大.
练习册系列答案
相关题目
19.下列说法中正确的是( )
| A. | 元电荷是电量为1.60×10-19C的带电粒子 | |
| B. | 电场是真实存在的而电场线是假想的 | |
| C. | 由C=$\frac{Q}{U}$得,C与Q成正比与U成反比 | |
| D. | 由F=$\frac{k{q}_{1}{q}_{2}}{{r}^{2}}$得,当r→0时,F→∞ |
6.
如图所示,在离地面高H的水平台面上,一个质量为m的物体自A点以初速度v0被抛出,运动到B点时的速度为vB,以A所在的平面为零势能面,不计空气阻力,当它达到B点时物体的机械能为( )
| A. | $\frac{1}{2}$mv02+mgh | B. | $\frac{1}{2}$mvB2+mgh | C. | $\frac{1}{2}$mv02 | D. | $\frac{1}{2}$mvB2-mgh |
3.关于平衡态和热平衡,下列说法中正确的是( )
| A. | 只要温度不变且处处相等,系统就一定处于平衡态 | |
| B. | 两处系统在接触时它们的状态不发生变化,这两个系统的温度是相等的 | |
| C. | 热平衡就是平衡态 | |
| D. | 处于热平衡的几个系统的温度一定相等 |
20.
如图所示,理想变压器初级线圈的匝数为1100,次级线圈的匝数为55,初级线圈两端a、b接正弦交流电源,在原线圈前串接一个电阻R0=121Ω的保险丝,电压表V的示数为220V,如果负载电阻R=5.5Ω,各电表均为理想电表,则( )
| A. | 电流表A的示数为1A | B. | 变压器的输出电压为5.5V | ||
| C. | 保险丝实际消耗的功率为1.21W | D. | 负载电阻实际消耗的功率为22$\sqrt{2}$W |