ÌâÄ¿ÄÚÈÝ

15£®ÈçͼËùʾ£¬ÔÚxOyÖ±½Ç×ø±êϵµÄµÚÈýÏóÏÞÄÚÓÐÆ½ÐÐÓÚxÖáµÄˮƽÔÈÇ¿µç³¡£¬ÔÚµÚÒ»ÏóÏÞÓд¹Ö±ÓÚÖ½ÃæÏòÍâµÄˮƽÔÈÇ¿´Å³¡B£®Ò»´øÕýµçºÉÁ¿Îªq¡¢ÖÊÁ¿ÎªmµÄÁ£×Ó£¬´Óµç³¡ÖÐAµãÑØyÖáÕý·½ÏòÒÔËÙ¶Èv0ÉäÈëµç³¡£¬´ÓÔ­µãO·É³öµç³¡£¬Á£×Ó´ÓOµã½øÈë´Å³¡ºó¾­¹ýÒ»¶Îʱ¼ä³·È¥´Å³¡£¬·¢ÏÖÁ£×Ó´ÓxÖáÉϵÄPµã·É³ö£¬·É³öʱµÄËÙ¶È·½ÏòÓëxÖáÕý·½Ïò³É15¡ã½Ç£¬ÒÑÖªAµã×ø±êΪ£¨-$\frac{L}{2}$£¬-L£©£¬²»¼ÆÁ£×ÓµÄÖØÁ¦£¬ÒÑÖªcos15¡ã=$\frac{\sqrt{6}+\sqrt{2}}{4}$£¬sin15¡ã=$\frac{\sqrt{6}-\sqrt{2}}{4}$£®Çó£º
£¨1£©ÔÈÇ¿µç³¡µÄµç³¡Ç¿¶ÈEµÄ´óС£®
£¨2£©³·È¥´Å³¡Ê±Á£×ÓËùÔÚλÖõÄ×ø±ê£®
£¨3£©Á£×Ó´ÓOµãÔ˶¯ÖÁPµãËùÓõÄʱ¼ät£®

·ÖÎö £¨1£©Á£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬ÓÉÀàÆ½Å×Ô˶¯¹æÂÉÇó³öµç³¡Ç¿¶È£®
£¨2£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÁ¦µÄÔÚ¹ìµÀ°ë¾¶£¬¸ù¾ÝÌâÒâÇó³öÁ£×ÓÔڴų¡ÖÐת¹ýµÄ½Ç¶È£¬È»ºóÇó³öÁ£×ÓµÄλÖÃ×ø±ê£®
£¨3£©¸ù¾ÝÁ£×Óת¹ýµÄ½Ç¶ÈÓëÁ£×ÓµÄÖÜÆÚ¹«Ê½Çó³öÁ£×ÓµÄÔ˶¯Ê±¼ä£®

½â´ð ½â£º£¨1£©Á£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬
ˮƽ·½Ïò£º$\frac{L}{2}$=$\frac{1}{2}$$\frac{qE}{m}$t2£¬
ÊúÖ±·½Ïò£ºL=v0t£¬
½âµÃ£ºE=$\frac{m{v}_{0}^{2}}{qL}$£»
£¨2£©Á£×ÓÔڴų¡ÖÐ×öÀàÆ½Å×Ô˶¯£¬
Á£×Ó½øÈë´Å³¡Ê±ÓëxÕý·½Ïò¼äµÄ¼Ð½ÇΪ¦È£¬
Ôò£ºtan¦È=$\frac{{v}_{0}}{{v}_{x}}$=$\frac{{v}_{0}}{\frac{qE}{m}¡Á\frac{L}{{v}_{0}}}$=1£¬Ôò¦È=45¡ã£¬

Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºqv0B=m$\frac{{v}_{0}^{2}}{r}$£¬½âµÃ£ºr=$\frac{m{v}_{0}}{qB}$£¬
ÓÉÓÚÁ£×ӷɳöʱµÄËÙ¶È·½ÏòÓëxÖáÕý·½Ïò³É15¡ã½Ç£¬ËùÒÔ³·È¥´Å³¡Ê±Á£×ÓµÄËÙ¶È·½ÏòÓëxÖáÕý·½Ïò³É15¡ã½Ç£¬
Óɼ¸ºÎ֪ʶ¿ÉµÃ£¬³·È¥´Å³¡Ê±Á£×ÓËùÔÚλÖõÄ×ø±ê£º
x=rcos45¡ã+rsin15¡ã£¬½âµÃ£ºx=$\frac{\sqrt{2}+\sqrt{6}}{4}$$\frac{m{v}_{0}}{qB}$£¬
y=rcos15¡ã-rsin45¡ã£¬½âµÃ£ºy=$\frac{\sqrt{6}-\sqrt{2}}{4}$$\frac{m{v}_{0}}{qB}$£»
£¨3£©Óɼ¸ºÎ֪ʶ¿ÉÖª£¬Á£×ÓÔڴų¡ÖÐת¹ýµÄÔ²ÐĽǣº¦Á=60¡ã£¬
Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÖÜÆÚ£ºT=$\frac{2¦Ðm}{qB}$£¬
Á£×Ó×öÔ²ÖÜÔ˶¯ËùÓõÄʱ¼ä£ºt1=$\frac{¦Á}{360¡ã}$T=$\frac{60¡ã}{360¡ã}$¡Á$\frac{2¦Ðm}{qB}$=$\frac{¦Ðm}{3qB}$£¬
Á£×Ó´Ó³·È¥´Å³¡ºóµ½µ½´ïxÖáËù¾­¹ýµÄÎ»ÒÆÎªs=$\frac{y}{sin15¡ã}$=$\frac{m{v}_{0}}{qB}$£¬
´Ë¹ý³ÌËùÓõÄʱ¼äΪ£ºt2=$\frac{s}{v}$=$\frac{s}{\frac{{v}_{0}}{sin45¡ã}}$=$\frac{\sqrt{2}m}{2qB}$£®
ËùÒÔÁ£×Ó´ÓOµãÔ˶¯ÖÁPµãËùÓõÄʱ¼ät=$\frac{2¦Ðm+3\sqrt{2}m}{6qB}$£®
´ð£º£¨1£©ÔÈÇ¿µç³¡µÄµç³¡Ç¿¶ÈEµÄ´óСΪ$\frac{m{v}_{0}^{2}}{qL}$£®
£¨2£©³·È¥´Å³¡Ê±Á£×ÓËùÔÚλÖõÄ×ø±êΪ£¨$\frac{\sqrt{2}+\sqrt{6}}{4}$$\frac{m{v}_{0}}{qB}$£¬$\frac{\sqrt{6}-\sqrt{2}}{4}$$\frac{m{v}_{0}}{qB}$£©£®
£¨3£©Á£×Ó´ÓOµãÔ˶¯ÖÁPµãËùÓõÄʱ¼ätΪ$\frac{2¦Ðm+3\sqrt{2}m}{6qB}$£®

µãÆÀ ±¾Ì⿼²éÁËÁ£×ÓÔڵ糡Óë´Å³¡ÖеÄÔ˶¯£¬·ÖÎöÇå³þÁ£×ÓµÄÔ˶¯¹ý³Ì£¬Ó¦ÓÃÀàÆ½Å×Ô˶¯¹æÂÉ¡¢Å£¶ÙµÚ¶þ¶¨ÂÉÓëÁ£×ÓµÄÖÜÆÚ¹«Ê½¼´¿ÉÕýÈ·½âÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø