ÌâÄ¿ÄÚÈÝ
12£®Ä³Í¬Ñ§Òª²âÁ¿Ò»¾ùÔÈвÄÁÏÖÆ³ÉµÄÔ²ÖùÌåµÄµç×èÂʦѣ®²½ÖèÈçÏ£º£¨1£©ÓÃÓαêΪ20·Ö¶ÈµÄ¿¨³ß²âÁ¿Æä³¤¶ÈÈçͼ1£¬ÓÉͼ¿ÉÖªÆä³¤¶ÈL=50.15mm£»
£¨2£©ÓÃÂÝÐý²â΢Æ÷²âÁ¿ÆäÖ±¾¶Èçͼ2£¬ÓÉͼ¿ÉÖªÆäÖ±¾¶D=4.699mm£»
£¨3£©ÓöàÓõç±íµÄµç×è¡°¡Á10¡±µ²£¬°´ÕýÈ·µÄ²Ù×÷²½Öè²â´ËÔ²ÖùÌåµÄµç×裬±íÅ̵ÄʾÊýÈçͼ3£¬Ôò¸Ãµç×èµÄ×èÖµR=300¦¸£®
£¨4£©¸ÃͬѧÏëÓ÷ü°²·¨¸ü¾«È·µØ²âÁ¿Æäµç×èR£¬ÏÖÓÐµÄÆ÷²Ä¼°Æä´úºÅºÍ¹æ¸ñÈçÏ£º
´ý²âÔ²ÖùÌåµç×èR
µçÁ÷±íA1£¨Á¿³Ì0¡«10mA£¬ÄÚ×èÔ¼50¦¸£©
µçÁ÷±íA2£¨Á¿³Ì0¡«50mA£¬ÄÚ×èÔ¼30¦¸£©
µçѹ±íV1£¨Á¿³Ì0¡«3V£¬ÄÚ×èÔ¼30k¦¸£©
µçѹ±íV2£¨Á¿³Ì0¡«15V£¬ÄÚ×èÔ¼50k¦¸£©
Ö±Á÷µçÔ´E£¨µç¶¯ÊÆ4V£¬ÄÚ×è²»¼Æ£©
»¬¶¯±ä×èÆ÷R1£¨×èÖµ·¶Î§0¡«50¦¸£¬ÔÊÐíͨ¹ýµÄ×î´óµçÁ÷0.5A£©
¿ª¹ØS¡¢µ¼ÏßÈô¸É£®
ΪʹʵÑéÎó²î½ÏС£¬ÒªÇó²âµÃ¶à×éÊý¾Ý½øÐзÖÎö£¬ÇëÔÚͼ4Öл³ö²âÁ¿µÄµç·ͼ£¬²¢±êÃ÷ËùÓÃÆ÷²ÄµÄ´úºÅ£®
·ÖÎö Ì⣨1£©Óα꿨³ß¶ÁÊýʱӦ·Ö³ÉÕûÊý²¿·ÖºÍСÊý²¿·ÖÁ½²¿·ÖÀ´¶Á£¬×¢Òâ·Ö¶È´óС£»Ì⣨2£©ÂÝÐý²â΢Æ÷¶ÁÊýʱӦ·Ö³ÉÕûÊý²¿·ÖºÍСÊý²¿·ÖÁ½²¿·ÖÀ´¶Á£¬×¢Òâ°ëºÁÃ׿̶ÈÏßÊÇ·ñ¶³ö£»Ì⣨4£©Ê×Ïȸù¾ÝµçÔ´µç¶¯ÊÆ´óСѡÔñ³öµçѹ±íµÄÁ¿³Ì£¬ÔÙͨ¹ýÇó³öͨ¹ý´ý²âµç×èµÄ×î´óµçÁ÷À´Ñ¡ÔñµçÁ÷±íÁ¿³Ì£¬¸ù¾ÝµçÁ÷±íÄÚÍâ½Ó·¨µÄÑ¡Ôñ·½·¨Åж¨Ó¦²ÉÓÃÄÚ½Ó·¨£»¸ù¾ÝÒªÇó¶à²â¼¸×éÊý¾Ý¿ÉÖª±ä×èÆ÷Ó¦²ÉÓ÷Öѹʽ½Ó·¨£¬¼´µç·ӦÊÇ·ÖѹÍâ½Óµç·£®
½â´ð ½â£»£¨1£©Óα꿨³ßµÄ¶ÁÊýΪ£ºL=50mm+3¡Á0.05mm=50.15mm£»
£¨2£©ÂÝÐý²â΢Æ÷µÄ¶ÁÊýΪ£ºD=4.5mm+19.9¡Á0.01mm=4.699£¨4.700¡À0.001£©£»
£¨3£©Å·Ä·±íµÄ¶ÁÊýΪ£ºR=30¡Á10¦¸=300¦¸£»
£¨4£©¸ù¾ÝµçÔ´µÄµç¶¯ÊÆÎª4V¿ÉÖªµçѹ±íӦѡÔñ${V}_{1}^{\;}$£»
ÓÉÓÚͨ¹ý´ý²âµç×èµÄ×î´óµçÁ÷Ϊ${I}_{max}^{\;}$=$\frac{E}{{R}_{x}^{\;}}$=$\frac{4}{300}A$=13mA£¬ËùÒÔµçÁ÷±íӦѡÔñ${A}_{1}^{\;}$£»
ÓÉÓÚ´ý²âµç×èÂú×ã$\frac{{R}_{V}^{\;}}{{R}_{x}^{\;}}$$£¾\frac{{R}_{x}^{\;}}{{R}_{A}^{\;}}$£¬ËùÒÔµçÁ÷±íÓ¦ÓÃÍâ½Ó·¨£»
ÓÉÓÚʵÑéÒªÇóÄܲâ¶à×éÊý¾Ý£¬ËùÒÔ±ä×èÆ÷Ó¦²ÉÓ÷Öѹʽ½Ó·¨£¬µç·ͼÈçͼËùʾ£º![]()
¹Ê´ð°¸Îª£º£¨1£©50.15£»£¨2£©4.699£»£¨3£©300£»£¨4£©Èçͼ
µãÆÀ Ó¦Ã÷È·£º¢ÙÓα꿨³ßºÍÂÝÐý²â΢Æ÷¶ÁÊýʱӦ·Ö³ÉÕûÊý²¿·ÖºÍСÊý²¿·ÖÁ½²¿·ÖÀ´¶Á£»¢Ú¸ù¾ÝµçÔ´µç¶¯ÊÆ´óСÀ´Ñ¡Ôñµçѹ±íµÄÁ¿³Ì£¬¸ù¾Ýͨ¹ý´ý²âµç×èµÄ×î´óµçÁ÷À´Ñ¡ÔñµçÁ÷±íµÄÁ¿³Ì£¬ÈôʵÑéÒªÇó¶à²â¼¸×éÊý¾Ý»òÒªÇóµçѹ´ÓÁãµ÷»ò²»ÕýÈ·µÄÈ«µç×èԶСÓÚ´ý²âµç×èʱ£¬±ä×èÆ÷Ó¦²ÉÓ÷Öѹʽ½Ó·¨£»¢Ûµ±´ý²âµç×èÂú×ã$\frac{{R}_{V}^{\;}}{{R}_{x}^{\;}}£¾\frac{{R}_{x}^{\;}}{{R}_{A}^{\;}}$ʱ£¬µçÁ÷±íÓ¦ÓÃÍâ½Ó·¨£¬Âú×ã$\frac{{R}_{V}^{\;}}{{R}_{x}^{\;}}£¼\frac{{R}_{x}^{\;}}{{R}_{A}^{\;}}$ʱµçÁ÷±íÓ¦ÓÃÄÚ½Ó·¨£®
| A£® | µç¼«A1µÄµçÊÆ¸ßÓڵ缫A2µÄµçÊÆ | |
| B£® | µç×ÓÔÚPµã´¦µÄ¶¯ÄÜСÓÚÔÚQµã´¦µÄ¶¯ÄÜ | |
| C£® | µç³¡ÖÐQµãµÄµç³¡Ç¿¶ÈСÓÚRµãµÄµç³¡Ç¿¶È | |
| D£® | µç×Ó´ÓPÖÁRµÄÔ˶¯¹ý³ÌÖУ¬µç³¡Á¦¶ÔËüÒ»Ö±×öÕý¹¦ |
| A£® | Á½Ìõ´Å¸ÐÏß¿ÉÒÔÏཻ | B£® | ÑØ´Å¸ÐÏß·½Ïò£¬´Å³¡Ô½À´Ô½Èõ | ||
| C£® | ´Å¸ÐÏß×ÜÊÇ´ÓN¼«³ö·¢£¬µ½S¼«ÖÕÖ¹ | D£® | ´Å¸ÐÏßµÄÊèÃ̶ܳȷ´Ó³´Å³¡µÄÇ¿Èõ |
| A£® | aµãµçÊÆÎªÁã | B£® | aµã³¡Ç¿´óÓÚbµã³¡Ç¿ | ||
| C£® | cµã³¡Ç¿¿ÉÄÜСÓÚdµã³¡Ç¿ | D£® | cµãµçÊÆ¿ÉÄÜСÓÚdµãµçÊÆ |
| A£® | E=$\frac{F}{q}$ºÍE=$\frac{kQ}{{r}^{2}}$£¬¶¼Ö»ÊÊÓÃÓÚµãµçºÉ²úÉúµÄµç³¡ | |
| B£® | E=$\frac{F}{q}$ÊÊÓÃÓÚÈκε糡£¬E=$\frac{kQ}{{r}^{2}}$Ö»ÊÊÓÃÓÚµãµçºÉ²úÉúµÄµç³¡ | |
| C£® | E=$\frac{F}{q}$Ö»ÊÊÓÃÓÚµãµçºÉ²úÉúµÄµç³¡£¬E=$\frac{kQ}{{r}^{2}}$ÊÊÓÃÓÚÈκε糡 | |
| D£® | E=$\frac{F}{q}$ºÍE=$\frac{kQ}{{r}^{2}}$ ¶¼ÊÊÓÃÓÚÈκε糡 |