ÌâÄ¿ÄÚÈÝ
4£®£¨1£©Ïß¿ò´©Ô½´Å³¡¹ý³ÌÖвúÉúµÄÈÈ£»
£¨2£©ab±ß´©Ô½´Å³¡¹ý³Ìͨ¹ýaµã½ØÃæµÄµçºÉÁ¿£»
£¨3£©ÔÚÍ¼Ê¾×ø±êÖл³öÏß¿ò´Ó¿ªÊ¼ÏÂÂäµ½cd±ß´©³ö´Å³¡¹ý³ÌËÙ¶ÈÓëʱ¼äµÄͼÏó£®
·ÖÎö Ïß¿òÏÈ×ÔÓÉÏÂÂ䣬ÒÔÒ»¶¨µÄËÙ¶È´¹Ö±½øÈë´Å³¡£¬ab±ßÔÚÇиî´Å¸ÐÏߣ¬²úÉú¸ÐÓ¦µç¶¯ÊÆ£¬³öÏÖ¸ÐÓ¦µçÁ÷£¬µ¼Ö°²ÅàÁ¦È¥×è°Ïß¿òÏÂÂ䣮µ±Ïß¿ò½øÈë´Å³¡Ê±£¬¸ù¾Ý°²ÅàÁ¦±í´ïʽ£¬È·¶¨°²ÅàÁ¦ÓëÖØÁ¦´óС¹ØÏµ£¬´Ó¶øÓɽ¹¶ú¶¨ÂÉ£¬ÇóÔÚÏÂÂäµÄ¹ý³ÌÖУ¬Ïß¿ò²úÉúµÄ½¹¶úÈÈ£®ÔÙͨ¹ýÏß¿ò½ØÃæµÄµçÁ¿qÔòÊÇÏß¿òµÄ´ÅͨÁ¿µÄ±ä»¯Óë×ܵç×èµÄ±ÈÖµ£®²¢Í¨¹ýÔ˶¯Ñ§¹«Ê½£¬½áºÏËÙ¶ÈÓëʱ¼äµÄ¹ØÏµ£¬×÷³öͼÏó£®
½â´ð ½â£º£¨1£©µ±ÏßȦab±ß½øÈë´Å³¡Ê±ËÙ¶ÈΪ£º${v}_{1}=\sqrt{2gh}=\sqrt{2¡Á10¡Á0.2}=2$m/s
²úÉúµÄµç¶¯ÊÆÎª£ºE=BLv1=1.0¡Á0.1¡Á2=0.2V
°²ÅàÁ¦Îª£ºF=BLI=BL$\frac{E}{R}$=$1.0¡Á0.1¡Á\frac{0.2}{0.02}$=1N
ÏßȦcd±ß½øÈë´Å³¡Ç°F=G£¬ÏßȦ×öÔÈËÙÔ˶¯£¬ÓÉÄÜÁ¿¹ØÏµ¿ÉÖª½¹¶úÈÈΪ£º
Q=mgL=0.1¡Á10¡Á0.1=0.1J
£¨2£©abÇиî´Å¸ÐÏß²úÉúµÄµç¶¯ÊÆÎª£ºE=BLv1
µçÁ÷ÊÇ£º$I=\frac{E}{R}$
ͨ¹ýaµãµçÁ¿£ºQ=It
´úÈëÊý¾ÝµÃ£ºQ=0.5C
£¨3£©Óɽ⣨1£©¿ÉÖª£¬ÏßȦ×ÔÓÉÂäϵÄʱ¼ä£º${t}_{1}=\sqrt{\frac{2h}{g}}=\sqrt{\frac{2¡Á0.2}{10}}s=0.2$s
Ôڴų¡ÄÚÔÈËÙ v=v1ʱ¼ä£º${t}_{2}=\frac{L}{{v}_{1}}=\frac{0.1}{2}s=0.05$s
ÍêÈ«½øÈë´Å³¡ºóµ½Â䵨Ô˶¯Ê±¼äΪt3£¬ÔòÓУº$H-l={v}_{1}{t}_{3}+\frac{1}{2}g{t}_{3}^{2}$
´úÈëÊý¾ÝµÃ£ºt3=0.2s
ͼÏóÈçÓÒ ![]()
´ð£º£¨1£©Ïß¿ò²úÉúµÄ½¹¶úÈÈQΪ0.1J£»£¨2£©Í¨¹ýÏß¿ò½ØÃæµÄµçÁ¿qΪ0.5C£»£¨3£©Í¨¹ý¼ÆË㻳öÏß¿òÔ˶¯µÄv¡«t ͼÏóÈçÉÏͼËùʾ£®
µãÆÀ ±¾Ìâµç´Å¸ÐÓ¦ÓëÁ¦Ñ§ÖªÊ¶¼òµ¥µÄ×ۺϣ¬ÅàÑøÊ¶±ð¡¢Àí½âͼÏóµÄÄÜÁ¦ºÍ·ÖÎö¡¢½â¾ö×ÛºÏÌâµÄÄÜÁ¦£®
| A£® | °²×°ÎüÊÕÂʽϸߵı¡Ä¤£¬Ì½²âÆ÷µÄ¼ÓËÙ¶È´ó | |
| B£® | °²×°·´ÉäÂʽϸߵı¡Ä¤£¬Ì½²âÆ÷µÄ¼ÓËÙ¶È´ó | |
| C£® | Á½ÖÖÇé¿öÏ£¬ÓÉÓÚ̽²âÆ÷µÄÖÊÁ¿Ò»Ñù£¬Ì½²âÆ÷µÄ¼ÓËÙ¶È´óСӦÏàͬ | |
| D£® | Á½ÖÖÇé¿öÏ£¬Ì½²âÆ÷µÄ¼ÓËÙ¶È´óС²»ºÃ±È½Ï |
| A£® | ÈôÔ×ÓºËF¿ÉÓÉÔ×ÓºËD¡¢E½áºÏ¶ø³É£¬Ôò½áºÏ¹ý³ÌÖÐÒ»¶¨ÒªÎüÊÕÄÜÁ¿ | |
| B£® | ÈôÔ×ÓºËA¿ÉÓÉÔ×ÓºËC¡¢B½áºÏ¶ø³É£¬Ôò½áºÏ¹ý³ÌÖÐÒ»¶¨ÒªÎüÊÕÄÜÁ¿ | |
| C£® | ÎÒ¹úÇØÉ½ºËµçÕ¾ËùÓõĺËȼÁÏ¿ÉÄÜÊÇÀûÓÃF·ÖÁѳÉD¡¢EµÄºË·´Ó¦ | |
| D£® | ÎÒ¹úÇØÉ½ºËµçÕ¾ËùÓõĺËȼÁÏ¿ÉÄÜÊÇÀûÓÃA·ÖÁѳÉC¡¢BµÄºË·´Ó¦ |
| A£® | Ôö´ó¡¢¼õС | B£® | ¼õС¡¢Ôö´ó | C£® | Ôö´ó¡¢Ôö´ó | D£® | ¼õС¡¢¼õС |
| A£® | 2£º1 2£º1 | B£® | 1£º1 1£º1 | C£® | 4£º3 3£º2 | D£® | 1£º1 3£º2 |