ÌâÄ¿ÄÚÈÝ
3£®| A£® | ÎÀÐÇbµÄÖÜÆÚСÓÚ24Сʱ | |
| B£® | ÎÀÐÇbºÍcµÄ»úеÄÜÏàµÈ | |
| C£® | µ½ÎÀÐÇaºÍbÏÂÒ»´ÎÏà¾à×î½ü£¬»¹Ðè¾¹ýʱ¼ät=$\frac{2¦Ð}{{¦Ø-\sqrt{\frac{GM}{r^3}}}}$ | |
| D£® | ÎÀÐÇaµÄ¶¯Äܽϴó |
·ÖÎö ÎÀÐÇÈÆµØÇòÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦ÓÉÍòÓÐÒýÁ¦Ìṩ£¬¾Ý´ËÓɰ뾶¹ØÏµ·ÖÎöÖÜÆÚ´óС¼°ÏßËٶȹØÏµ£¬ÎÀÐÇÔÙ´ÎÏà¾à×î½ü£¬ÔòÎÀÐÇת¶¯µÄ½Ç¶È²îΪ2¦Ð£¬ÓÉ´Ë·ÖÎö¼ÆËã¼´¿É£®
½â´ð ½â£ºA¡¢¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÎÀÐÇÏòÐÄÁ¦ÓÐ$G\frac{mM}{{r}^{2}}=mr£¨\frac{2¦Ð}{T}£©^{2}$¿ÉµÃÎÀÐÇÖÜÆÚT=$\sqrt{\frac{4{¦Ð}^{2}{r}^{3}}{G{T}^{2}}}$£¬ÓÉ´Ë¿ÉÖªÎÀÐǹìµÀ°ë¾¶Ô½´óÎÀÐÇÖÜÆÚÔ½´ó£¬¶øÎÀÐÇaΪͬ²½ÎÀÐÇ£¬¹ÊÎÀÐÇbµÄÖÜÆÚ´óÓÚͬ²½ÎÀÐǵÄÖÜÆÚ¼´24h£¬¹ÊA´íÎó£»
B¡¢ÎÀÐǵĻúеÄܵÈÓÚÆä¶¯ÄÜÓëÊÆÄÜÖ®ºÍ£¬Òò²»ÖªµÀÎÀÐǵÄÖÊÁ¿£¬¹Ê²»ÄÜÈ·¶¨ÎÀÐǵĻúеÄÜ´óС¹ØÏµ£¬¹ÊB´íÎó£»
C¡¢¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦ÓÐ$G\frac{mM}{{r}^{2}}=mr{¦Ø}^{2}$£¬¿ÉµÃbÎÀÐǵĽÇËÙ¶È$¦Ø=\sqrt{\frac{GM}{{r}^{3}}}$£¬¿ÉÖª°ë¾¶Ô½´ó½ÇËÙ¶ÈԽС£¬ÎÀÐÇÓÉÏà¾à×î½üÖÁÔÙ´ÎÏà¾à×î½üʱ£¬Ô²ÖÜÔ˶¯×ª¹ýµÄ½Ç¶È²îΪ2¦Ð£¬ËùÒԿɵþÀúµÄʱ¼ä$t=\frac{2¦Ð}{¦Ø-\sqrt{\frac{GM}{{r}^{3}}}}$£¬¹ÊCÕýÈ·£»
D¡¢¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦ÓÐ$G\frac{mM}{{r}^{2}}=m\frac{{v}^{2}}{r}$£¬¿ÉµÃÎÀÐǵ͝ÄÜ${E}_{k}=\frac{1}{2}m{v}^{2}=\frac{1}{2}•\frac{GmM}{r}$£¬¶¯ÄܵĴóСÓëÎÀÐǵÄÖÊÁ¿Ò²Óйأ¬¶øÎ´ÖªÎÀÐÇÖÊÁ¿µÄ´óС£¬¹Ê²»ÄÜÈ·¶¨ÎÀÐǶ¯ÄܵĴóС£¬¹ÊD´íÎó£®
¹ÊÑ¡£ºC£®
µãÆÀ ÔÚÎÀÐÇÎÊÌâµÄ´¦ÀíÖÐÖ÷ҪץסÎÀÐÇÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦ÓÉÍòÓÐÒýÁ¦Ìṩ£¬Äܸù¾ÝÎÀÐǹìµÀ°ë¾¶µÄ´óСȷ¶¨ÃèÊöÎÀÐÇÔ²ÖÜÔ˶¯ÎïÀíÁ¿µÄ´óСÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
| A£® | µ±µç×è±ä´óʱ£¬abcdÖÐÓиÐÓ¦µçÁ÷ | |
| B£® | µ±µç×è±äСʱ£¬abcdÖÐÓиÐÓ¦µçÁ÷ | |
| C£® | µç×è²»±ä£¬½«abcdÔÚÆäÔÀ´ËùÔ򵀮½ÃæÄÚÏòPQ¿¿½üʱ£¬ÆäÖÐÓиÐÓ¦µçÁ÷ | |
| D£® | µç×è²»±ä£¬½«abcdÔÚÆäÔÀ´ËùÔ򵀮½ÃæÄÚÊúÖ±ÏòÉÏÔ˶¯Ê±£¬ÆäÖÐÓиÐÓ¦µçÁ÷ |
| A£® | ±ä»¯¹æÂɲ»Í¬£¬±¾Öʲ»Í¬ | B£® | ±ä»¯¹æÂÉÏàͬ£¬±¾ÖÊÏàͬ | ||
| C£® | ±ä»¯¹æÂɲ»Í¬£¬±¾ÖÊÏàͬ | D£® | ±ä»¯¹æÂÉÏàͬ£¬±¾Öʲ»Í¬ |
| A£® | ×öÔÈËÙÔ²ÖÜÔ˶¯µÄÎïÌåËùÊܵÄÏòÐÄÁ¦´óС²»±ä£¬ÊÇÒ»¸öºãÁ¦ | |
| B£® | ×öÔ²ÖÜÔ˶¯µÄÎïÌ壬ÆäÏòÐļÓËÙ¶ÈÒ»¶¨Ö¸ÏòÔ²ÐÄ | |
| C£® | µØÇò×Ôתʱ£¬µØÃæÉϸ÷µãµÄÏòÐļÓËٶȶ¼Ö¸ÏòµØÐÄ | |
| D£® | ÏòÐÄÁ¦Ö»¸Ä±äÎïÌåËٶȵķ½Ïò£¬²»¸Ä±äÎïÌåËٶȵĴóС |