ÌâÄ¿ÄÚÈÝ
11£®£¨1£©»¬¿éµÚÒ»´Îµ½´ïBµãµÄËÙ¶ÈV=£¿
£¨2£©»¬¿é´ÓBµã³åÉÏÐ±Ãæµ½Ôٴλص½BµãËùÓÐʱ¼ät=£¿
£¨3£©»¬¿éÔÚÐ±ÃæÉÏÔ˶¯µÄ×Ü·³ÌS=£¿
·ÖÎö £¨1£©¶ÔµÚÒ»´Îµ½´ïBµãµÄ¹ý³ÌÔËÓö¯Äܶ¨Àí£¬Çó³öµ½´ïBµãµÄËÙ¶È´óС£®
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ·Ö±ðÇó³öÎïÌåÑØÐ±ÃæÉÏ»¬ºÍÏ»¬µÄ¼ÓËÙ¶È´óС£¬½áºÏÔ˶¯Ñ§¹«Ê½¼´¿ÉÇó³ö»¬¿é´ÓBµã³åÉÏÐ±Ãæµ½Ôٴλص½BµãËùÓÐʱ¼ä£¬
£¨3£©¶ÔÈ«¹ý³ÌÔËÓö¯Äܶ¨Àí£¬Çó³öͨ¹ýµÄ×Ü·³Ì£®
½â´ð ½â£º£¨1£©µÚÒ»´Îµ½´ïBµãµÄËÙ¶ÈΪv1£¬¸ù¾Ý¶¯Äܶ¨ÀíµÃ£¬mg£¨h+Rcos37¡ã£©=$\frac{1}{2}m{v}_{1}^{2}$£¬
´úÈëÊý¾Ý½âµÃ${v}_{1}^{\;}=2\sqrt{10}$m/s£®
£¨2£©ÑØÐ±ÃæÉÏ»¬¼ÓËÙ¶ÈΪa1=gsin37¡ã+¦Ìgcos37¡ã=6+0.5¡Á8=10m/s2£¬
ÑØÐ±ÃæÏ»¬¼ÓËÙ¶ÈΪa2=gsin37¡ã-¦Ìgcos37¡ã=6-0.5¡Á8=2m/s2£¬
ÑØÐ±ÃæÏòÉÏÔ˶¯µÄ×î´óÎ»ÒÆ$s=\frac{{v}_{1}^{2}}{2{a}_{1}^{\;}}=\frac{£¨2\sqrt{10}£©_{\;}^{2}}{2¡Á10}m=2m$
ÑØÐ±ÃæÏòÉÏÔ˶¯µÄʱ¼ä${t}_{1}^{\;}=\frac{{v}_{1}^{\;}}{{a}_{1}^{\;}}=\frac{2\sqrt{10}}{10}s=\frac{\sqrt{10}}{5}s$
ÑØÐ±ÃæÏ»¬Ê±¼ä${t}_{2}^{\;}$£¬$s=\frac{1}{2}{a}_{2}^{\;}{t}_{2}^{2}$
½âµÃ${t}_{2}^{\;}=\sqrt{2}s$
$t={t}_{1}^{\;}+{t}_{2}^{\;}=£¨\frac{\sqrt{10}}{5}+\sqrt{2}£©s$
£¨3£©¸ù¾Ýmg£¨h+Rcos37¡ã£©=¦Ìmgcos37¡ãsµÃ£¬
´úÈëÊý¾Ý½âµÃs=5m£®
´ð£º£¨1£©»¬¿éµÚÒ»´Îµ½´ïBµãµÄËÙ¶ÈΪ$2\sqrt{10}m/s$
£¨2£©»¬¿é´ÓBµã³åÉÏÐ±Ãæµ½Ôٴλص½BµãËùÓÐʱ¼ätΪ$£¨\frac{\sqrt{10}}{5}+\sqrt{2}£©s$
£¨3£©»¬¿éÔÚÐ±ÃæÉÏÔ˶¯µÄ×Ü·³ÌΪ5m
µãÆÀ ±¾Ì⿼²éÁ˶¯Äܶ¨ÀíµÄ»ù±¾ÔËÓã¬ÔËÓö¯Äܶ¨Àí½âÌâ¹Ø¼üÑ¡ÔñºÃÑо¿µÄ¹ý³Ì£¬·ÖÎö¹ý³ÌÖÐÓÐÄÄЩÁ¦×ö¹¦£¬È»ºóÁÐʽÇó½â£¬
| A£® | Fa=Fb=Fc | B£® | Fa£¾Fb | C£® | Fa£¼Fb | D£® | Fa£¼Fc |
| A£® | aºÍbÓëÔ²Å̼äµÄ×î´ó¾²Ä¦²ÁÁ¦ÏàµÈ | |
| B£® | aºÍbÓëÔ²Å̼äµÄ×î´ó¾²Ä¦²ÁÁ¦Ö®±ÈΪ1£º2 | |
| C£® | aÏà¶ÔÔ²ÅÌ»¬¶¯Ö®Ç°µÄÕû¸ö¹ý³ÌÄÚ£¬Ä¦²ÁÁ¦¶Ôa²»×ö¹¦ | |
| D£® | bÏà¶ÔÔ²ÅÌ»¬¶¯Ö®Ç°µÄÕû¸ö¹ý³ÌÄÚ£¬Ä¦²ÁÁ¦¶Ôb×öÕý¹¦ |
| A£® | ³õËÙ¶ÈÓëºÏÍâÁ¦¼Ð½ÇÒ»¶¨³É¶Û½Ç | B£® | ³õËÙ¶ÈÓëºÏÍâÁ¦¼Ð½ÇÒ»¶¨³ÉÈñ½Ç | ||
| C£® | ³õËÙ¶ÈÓëºÏÍâÁ¦Ò»¶¨´¹Ö± | D£® | ×îСËÙ¶ÈÒ»¶¨µÈÓÚ0 |
| A£® | ³Ë×øµÄ¿Í³µ | B£® | µçÏß¸Ë | C£® | ·¿ÎÝ | D£® | Â·Ãæ |
| A£® | ¼ÓËٶȾÍÊÇÔö¼ÓµÄËÙ¶È | B£® | ¼ÓËٶȵÈÓÚËٶȱ仯Á¿ | ||
| C£® | ¼ÓËٶȵÈÓÚËٶȱ仯ÂÊ | D£® | ¼ÓËÙ¶È·´Ó³ÁËÎïÌåÔ˶¯µÄ¿ìÂý |