ÌâÄ¿ÄÚÈÝ
13£®Ð¡´ÏÔÚʵÑéÊÒÀïÕÒµ½Ò»°Ñµ¯»É²âÁ¦¼Æ£¬°´Í¼¼×Ëùʾ°²×°Ï¸ÏߺͲâÁ¦¼Æºó£¬ËûÓÃÁ¦»ºÂýÊúÖ±ÏòÏÂÀ²âÁ¦¼Æ£¬Ö±µ½²âÁ¦¼ÆµÄʾÊý´ïµ½Á¿³Ì£¨Ï¸ÏßûÓжÏÁÑ£©£¬¶Á³ö²âÁ¦¼ÆµÄʾÊýF£¬½«F¼ÇΪϸÏßÄܳÐÊܵÄ×î´óÀÁ¦£®
СÃ÷ÔÚʵÑéÊÒÀﻹÕÒµ½Ò»°Ñ¿Ì¶È³ßºÍÒ»¸öÍæ¾ßСÐÜ£¬½Ó׎øÐÐÁËÈçϵIJÙ×÷£º
¢ÙÓÿ̶ȳ߲â³öϸÏߵij¤¶ÈL£¬Óõ¯»É²âÁ¦¼Æ²â³öÍæ¾ßСÐܵÄÖØÁ¦G£»
¢Ú°´Í¼ÒÒËùʾ°²×°Íæ¾ßСÐÜ¡¢Ï¸Ïߣ¨Íæ¾ßСÐÜÐü¹ÒÔÚϸÏßµÄÖе㣩£»
¢ÛÁ½ÊÖÄó×ÅϸÏß»ºÂýÏòÁ½±ßÒÆ¶¯Ö±µ½Ï¸Ïß¶ÏÁÑ£¬¶Á³ö´ËʱÁ½ÊÖ¼äµÄˮƽ¾àÀëd£»
¢ÜÀûÓÃÆ½ºâÌõ¼þËã³ö½á¹û£®
ÔÚ²»¼ÆÏ¸ÏßÖÊÁ¿ºÍÉ쳤ӰÏìµÄÇé¿öÏ£¬Çë»Ø´ð£º
£¨1£©Ð¡Ã÷Ëã³öµÄϸÏßÄܳÐÊܵÄ×î´óÀÁ¦ÊÇ$\frac{GL}{2\sqrt{{L}^{2}-{d}^{2}}}$£¨ÓÃL¡¢G¡¢d±íʾ£©£»Á½Î»Í¬Ñ§ÖУ¬Ð¡Ã÷£¨Ñ¡ÌС´Ï¡±»ò¡°Ð¡Ã÷¡±£©µÄ²âÁ¿½á¹û½Ï׼ȷ£®
£¨2£©ÔÚСÃ÷Á½ÊÖÄó×ÅϸÏß»ºÂýÏòÁ½±ßÒÆ¶¯µÄÉÏÊö¹ý³ÌÖУ¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇC£¨ÌîÑ¡ÏîÐòºÅ×Öĸ£©£®
A£®Ï¸ÏßÉϵÄÀÁ¦´óС²»±ä B£®Ï¸ÏßÉϵÄÀÁ¦´óС¼õС
C£®Ï¸ÏßÉÏÀÁ¦µÄºÏÁ¦´óС²»±ä D£®Ï¸ÏßÉÏÀÁ¦µÄºÏÁ¦´óСÔö´ó£®
·ÖÎö Á½ÖÖ·½°¸¶¼ÊǸù¾Ý¹²µãÁ¦Æ½ºâÇó½âÉþ×ÓµÄ×î´óÀÁ¦£¬´Ó¶ø²Ù×÷µÄ¿ÉÐÐÐÔ½øÐÐÅжÏÄÄÖÖ·½°¸×îºÃ£®
¸ù¾Ý¹²µãÁ¦Æ½ºâµÃϸÏßÉÏ×î´ó³ÐÊܵÄÀÁ¦ÔÚÊúÖ±·½ÏòºÏÁ¦ºÍÎïÌåÖØÁ¦ÏàµÈ£¬¸ù¾ÝÈý½Çº¯Êý¹ØÏµÇó³ö×î´óÀÁ¦£®
½â´ð ½â£º£¨1£©µ±Éþ×Ó¶Ïʱ£¬¸ù¾Ý¹²µãÁ¦Æ½ºâÇó³öÉþ×ÓµÄ×î´óÀÁ¦£®
Éþ×ÓÓëÊúÖ±·½Ïò¼Ð½ÇµÄÕýÏÒÖµsin¦È=$\frac{d}{L}$£¬
Ôòcos¦È=$\frac{\sqrt{{L}^{2}-{d}^{2}}}{L}$£¬
¸ù¾ÝƽºâÓУº2Fcos¦È=G£¬
½âµÃ×î´óÀÁ¦F=$\frac{GL}{2\sqrt{{L}^{2}-{d}^{2}}}$£®
С´Ï·½°¸Öй³ÂëÖ»ÄÜÒ»¸öÒ»¸ö¼Ó£¬Ê¹µÃ²âÁ¿µÄÃÞÏßÀÁ¦²»Á¬Ðø£¬Ôì³É²âÁ¿µÄ²»×¼È·£¬ËùÒÔСÃ÷µÄ²âÁ¿½á¹û½Ï׼ȷ£®
£¨2£©ÔÚСÃ÷Á½ÊÖÄó×ÅϸÏß»ºÂýÏòÁ½±ßÒÆ¶¯µÄÉÏÊö¹ý³ÌÖУ¬
¸ù¾Ý¹²µãÁ¦Æ½ºâµÃ³öϸÏßÉÏÀÁ¦µÄºÏÁ¦´óС²»±ä£¬´óСµÈÓÚÎïÌåÖØÁ¦£¬Ï¸ÏßÉϵÄÀÁ¦´óСÔö´ó£¬¹ÊCÕýÈ·£¬ABD´íÎó£»
¹ÊÑ¡£ºC£®
¹Ê´ð°¸Îª£º£¨1£©$\frac{GL}{2\sqrt{{L}^{2}-{d}^{2}}}$£»Ð¡Ã÷£»£¨2£©C
µãÆÀ ±¾Ì⿼²éÁËѧÉúµÄÉè¼ÆºÍʵÑéµÄÄÜÁ¦£¬¿ÉÒÔÌá¸ßѧÉú¶¯ÊÖºÍ˼¿¼¡¢½â¾öÎÊÌâµÄÄÜÁ¦£¬¹Ø¼üÖªµÀʵÑéµÄÔÀí£¬Í¨¹ý¹²µãÁ¦Æ½ºâ½øÐзÖÎö£®
| A£® | $\frac{1}{2}$mv02 | B£® | $\frac{1}{2}$mv02+$\frac{3}{4}$qEL | C£® | $\frac{1}{2}$mv02-$\frac{1}{4}$qEL | D£® | $\frac{1}{2}$mv02-qEL |
¢ÙÈçͼ £¨a£©£¬½«ÇáÖʵ¯»É϶˹̶¨ÓÚÌú¼Ų̈£¬ÔÚÉ϶˵ÄÍÐÅÌÖÐÒÀ´ÎÔö¼ÓíÀÂ룬²âµÃÏàÓ¦µÄµ¯»É³¤¶È£¬²¿·ÖÊý¾ÝÈçÏÂ±í£º
| íÀÂëÖÊÁ¿£¨g£© | 50 | 100 | 150 |
| µ¯»É³¤¶È£¨cm£© | 8.62 | 7.63 | 6.66 |
¢ÛÔÚAºÍB¼ä·ÅÈëÇᵯ»É²¢½«µ¯»ÉѹËõ£¬Óõ綯¿¨ÏúËø¶¨£¬¼Ç¼µ¯»ÉµÄѹËõÁ¿x£»¾²Ö¹·ÅÖÃÔÚÆøµæµ¼¹ìÉÏ£»Èçͼ£¨b£©
¢ÜÊͷŵ¯»É£¬A¡¢B»¬¿é·Ö±ðÔÚÆøµæµ¼¹ìÉÏÔ˶¯£¬¶Á³ö»¬¿éA¡¢BµÄµ²¹âÌõ·Ö±ðͨ¹ý¹âµçÃŵĵ²¹âʱ¼ät1ºÍt2£®
£¨1£©ÓɱíÖÐÊý¾ÝËãµÃµ¯»ÉµÄ¾¢¶ÈϵÊýk=50N/m£¬£¨gÈ¡9.8m/s2£©
£¨2£©ÎªÁ˼ÆË㱻ѹËõµ¯»ÉµÄµ¯ÐÔÊÆÄÜ´óС£¬»¹±ØÐëÖªµÀµÄÎïÀíÁ¿ÊÇA»¬¿éµ²¹âÌõµÄ¿í¶ÈL1ºÍB»¬¿éµ²¹âÌõµÄ¿í¶ÈL2£¬µ¯»ÉµÄµ¯ÐÔÊÆÄÜ´óСµÄ±í´ïʽΪEP=$\frac{1}{2}{m_A}{£¨\frac{L_1}{t_1}£©^2}+\frac{1}{2}{m_B}{£¨\frac{L_2}{t_2}£©^2}$£®£¨Ð´³öÎïÀíÁ¿¼°±íʾ¸ÃÎïÀíÁ¿ÏàÓ¦µÄ×Öĸ£©£®
| A£® | µ±µØµÄÖØÁ¦¼ÓËÙ¶ÈΪ$\frac{a}{m}$ | |
| B£® | ÇáÖÊÉþ³¤Îª$\frac{mb}{a}$ | |
| C£® | µ±v2=cʱ£¬ÇáÖÊÉþµÄÀÁ¦´óСΪ$\frac{ab}{c}$+b | |
| D£® | µ±v2=cʱ£¬ÇáÖÊÉþµÄÀÁ¦´óСΪ$\frac{bc}{a}$+a |
| A£® | 3N 4N 5N | B£® | 2N 3N 6N | C£® | 4N 6N 9N | D£® | 5N 6N 11N |
| A£® | ÓлúеÕñ¶¯´æÔÚ¾ÍÒ»¶¨Óлúе²¨´æÔÚ | |
| B£® | Óлúе²¨´æÔھͲ»Ò»¶¨ÓлúеÕñ¶¯´æÔÚ | |
| C£® | »úе²¨ÑØÄ³Ò»·½Ïò´«²¥£¬Öʵã¾ÍÑØ¸Ã·½ÏòÔ˶¯ | |
| D£® | »úе²¨ÑØÄ³Ò»·½Ïò´«²¥£¬ÄÜÁ¿Ò²Ñظ÷½Ïò´«²¥ |
| A£® | t=$\frac{1}{600}$sʱ£¬ÔÏßȦÊäÈëµçѹµÄ˲ʱֵΪ18$\sqrt{2}$V | |
| B£® | t=$\frac{1}{600}$sʱ£¬µçѹ±íʾÊýΪ18V | |
| C£® | µçÁ÷±íʾÊýΪ1A | |
| D£® | ±äѹÆ÷µÄÊäÈ빦ÂÊΪ9W |