ÌâÄ¿ÄÚÈÝ
15£®| A£® | ÐÐÀîÔÚ´«ËÍ´øÉÏÒ»Ö±×öÔȼÓËÙÖ±ÏßÔ˶¯ | |
| B£® | ÐÐÀîµ½´ïB´¦µÄËÙ¶ÈΪ6m/s | |
| C£® | ÐÐÀî´ÓA´¦µ½´ïB´¦ÓÃʱ4s | |
| D£® | ´«ËÍ´ø½«ÁôÏÂÒ»¶ÎĦ²ÁºÛ¼££¬ÆäºÛ¼£³¤Îª4m |
·ÖÎö ÐÐÀîµÄËÙ¶ÈСÓÚ´«ËÍ´øµÄËÙ¶È£¬Ïà¶ÔÓÚ´«ËÍ´øÏòºó»¬£¬Êܵ½ÏòǰµÄĦ²ÁÁ¦£¬×öÔȼÓËÙÖ±ÏßÔ˶¯£¬µ±´ïµ½´«ËÍ´øËٶȺóÒ»Æð×öÔÈËÙÖ±ÏßÔ˶¯£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½½øÐзÖÎö£®
½â´ð ½â£ºA¡¢ÐÐÀîÔÚ´«ËÍ´øÉÏÔȼÓËÙÖ±ÏßÔ˶¯µÄ¼ÓËÙ¶ÈΪ£º
a=$\frac{¦Ìmg}{m}=¦Ìg=2m/{s}^{2}$£¬
ÔòÔȼÓËÙÖ±ÏßÔ˶¯µÄʱ¼äΪ£º
${t}_{1}=\frac{{v}_{´ø}-{v}_{0}}{a}=\frac{6-2}{2}s=2s$£¬
ÔȼÓËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆÎª£º
$x{\;}_{1}={v}_{0}{t}_{1}+\frac{1}{2}a{{t}_{1}}^{2}=8m$£¬
È»ºó×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔÈËÙÔ˶¯µÄʱ¼äΪ£º
t2=$\frac{L-{x}_{1}}{{v}_{´ø}}=\frac{16-8}{6}s=\frac{4}{3}s$£¬
ÔòÐÐÀî´ÓAµ½BµÄʱ¼ät=$\frac{10}{3}s$£®µ½´ïBµãµÄËÙ¶ÈΪ6m/s£®¹ÊA¡¢C´íÎó£¬BÕýÈ·£®
D¡¢ÔÚÏà¶ÔÔ˶¯µÄ¹ý³ÌÖУ¬´«ËÍ´øµÄÎ»ÒÆÎª£ºx2=v´øt1=6¡Á2m=12m£¬
ÔòºÛ¼££¨Ïà¶ÔÔ˶¯µÄÎ»ÒÆ£©Îª£º¡÷x=x2-x1=12-8=4m£®¹ÊDÕýÈ·£®
¹ÊÑ¡£ºBD£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÀíÇåÐÐÀîµÄÔ˶¯Çé¿ö£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½½øÐÐÇó½â£®
| A£® | ³õËÙ¶È´óСΪ2m/s | B£® | ¼ÓËÙ¶È´óСΪ4m/s2 | ||
| C£® | µÚ4sÄ򵀮½¾ùËÙ¶ÈΪ8m/s | D£® | 5sÄÚµÄÎ»ÒÆÎª50m |
| A£® | 4±¶ | B£® | 2±¶ | C£® | $\sqrt{2}$±¶ | D£® | $\frac{1}{4}$±¶ |
| A£® | Ð±ÃæÌå¸øÐ¡Îï¿éµÄ×÷ÓÃÁ¦´óСµÈÓÚmg | |
| B£® | Ð±ÃæÌå¶ÔµØÃæµÄѹÁ¦Ð¡ÓÚ£¨m+M£©g | |
| C£® | Èô½«Á¦FµÄ·½ÏòͻȻ¸ÄΪÊúÖ±ÏòÏ£¬Ð¡Îï¿éÈÔ×ö¼ÓËÙÔ˶¯ | |
| D£® | Èô½«Á¦F³·µô£¬Ð¡Îï¿é½«ÔÈËÙÏ»¬ |
| A£® | A¶ÔBµÄ×÷ÓÃÁ¦´óÓÚB¶ÔAµÄ×÷ÓÃÁ¦ | |
| B£® | A¶ÔµØÃæÑ¹Á¦´óÓÚAµÄÖØÁ¦ | |
| C£® | B¶ÔµØÃæÑ¹Á¦´óÓÚBµÄÖØÁ¦ | |
| D£® | A¶ÔµØÃæµÄѹÁ¦´óÓÚµØÃæ¶ÔAµÄÖ§³ÖÁ¦ |