题目内容
18.| A. | 电阻R中的感应电流方向由a到c | |
| B. | 物体下落的最大加速度为0.5g | |
| C. | 若h足够大,物体下落的最大速度为$\frac{mgR}{{B}^{2}{I}^{2}}$ | |
| D. | 通过电阻R的电量为$\frac{Blh}{R}$ |
分析 从静止开始释放物块,导体棒切割磁感线产生感应电流,根据右手定则判断感应电流方向.根据牛顿第二定律列式分析最大加速度.当导体棒匀速运动时,速度最大,由平衡条件和安培力的表达式结合推导出最大速度.根据感应电荷量表达式q=$\frac{△Φ}{R}$求解电量.
解答 解:A、从静止开始释放物块,导体棒切割磁感线产生感应电流,由右手定则可知,电阻R中的感应电流方向由c到a,故A错误.
B、设导体棒所受的安培力大小为F,根据牛顿第二定律得:物块的加速度a=$\frac{mg-F}{2m}$,当F=0,即刚释放导体棒时,a最大,最大值为$\frac{1}{2}$g.故B正确.
C、物块和滑杆先做加速运动,后做匀速运动,此时速度最大,则有mg=F,而F=BIl,I=$\frac{Blv}{R}$,解得物体下落的最大速度为v=为$\frac{mgR}{{B}^{2}{I}^{2}}$.故C正确.
D、通过电阻R的电量:q=It=$\frac{△Φ}{R△t}△t$=$\frac{△Φ}{R}$=$\frac{B△s}{R}$=$\frac{Blh}{R}$.故D正确.
故选:BCD.
点评 本题分析物体的运动情况是解题的基础,关键掌握要会推导安培力,知道感应电荷量表达式q=$\frac{△Φ}{R}$,注意式中R是回路的总电阻.
练习册系列答案
相关题目
9.两质量相同的卫星绕地球做匀速圆周运动,轨道半径之比r1:r2=2:1,则关于两卫星的下列说法正确的是( )
| A. | 向心加速度之比为a1:a2=1:4 | B. | 角速度之比为ω1:ω2=2:1 | ||
| C. | 动能之比为${E}_{{k}_{1}}$:${E}_{{k}_{2}}$=2:1 | D. | 机械能之比为E1:E2=1:1 |
3.
如图所示,在直线电流附近有一根金属棒ab,当金属棒以b端为圆心,以ab为半径,在过导线的平面内按图示方向匀速旋转的过程中( )
| A. | a端聚积电子 | B. | b端聚积电子 | ||
| C. | 金属棒内电场强度等于零 | D. | ua<ub |
10.某同学在学习中记录了一些与地球、月球有关的数据资料如表中所示,利用这些数据来计算地球表面与月球表面之间的距离s,则下列运算公式中错误的是( )
| 地球半径 | R=6400km |
| 月球半径 | r=1740km |
| 地球表面重力加速度 | g0=9.80m/s2 |
| 月球表面重力加速度 | g′=1.56m/s2 |
| 月球绕地球转动的线速度 | v=1km/s |
| 月球绕地球转动周期 | T=27.3天 |
| 光速 | c=2.998×105 km/s |
| 用激光器向月球表面发射激光光束,经过约t=2.565s接收到从月球表面反射回来的激光信号 | |
| A. | $\frac{v2}{g′}$-R-r | B. | $\frac{vT}{2π}$-R-r | ||
| C. | s=c•$\frac{t}{2}$ | D. | $\root{3}{\frac{{g}_{0}{R}^{2}{T}^{2}}{4{π}^{2}}}$-R-r |
7.一物体从较高处作自由落体运动,经ts后刚好着地.已知t为大于3的整数,取g=10m/s2,则( )
| A. | 第1s内物体下落的高度为5m | B. | 第3s内物体下落的高度为25m | ||
| C. | 第ts内物体下落的高度为5(2t-1)m | D. | 第(t-1)s内物体下落的高度为5(2t-3)m |
8.
如图,在相隔一定距离的两个等量点电荷+Q形成的电场中,有正方形的四个顶点A、B、C、D,O为正方形对角线的交点.已知A、C两点电势相等,电场强度大小相等、方向相反.两个点电荷在A、B、C、D四个点所在的平面内.则( )
| A. | O点的电场强度一定为零 | |
| B. | 两个点电荷一定在对角线BD上 | |
| C. | B、D两点的电场强度一定相同 | |
| D. | 试探电荷沿着对角线AC移动,电势能始终不变 |