ÌâÄ¿ÄÚÈÝ
15£®£¨1£©ÊµÑéʱ£¬Èû¬¿é´Ó²»Í¬¸ß¶ÈÓɾ²Ö¹ÑØÐ±ÃæÏ»¬£¬²¢Í¬Ê±´ò¿ª×°ÖÃÖеķ§ÃÅ£¬Ê¹Ë®ÏäÖеÄË®Á÷µ½Á¿Í²ÖУ»µ±»¬¿éÅöµ½µ²°åµÄͬʱ¹Ø±Õ·§ÃÅ£¨Õû¸ö¹ý³ÌÖÐË®Á÷¿ÉÊÓΪ¾ùÔÈÎȶ¨µÄ£©£®¸ÃʵÑé̽¾¿·½°¸ÊÇÀûÓÃÁ¿Í²ÖÐÊÕ¼¯µÄË®Á¿À´²âÁ¿Ê±¼äµÄ£®
£¨2£©±íÊǸÃС×é²âµÃµÄÓйØÊý¾Ý£¬ÆäÖÐsΪ»¬¿é´ÓÐ±ÃæµÄ²»Í¬¸ß¶ÈÓɾ²Ö¹ÊͷźóÑØÐ±ÃæÏ»¬µÄ¾àÀ룬VΪÏàÓ¦¹ý³ÌÖÐÁ¿Í²ÖÐÊÕ¼¯µÄË®Á¿£®·ÖÎö±íÖÐÊý¾Ý£¬·¢ÏÖÔÚʵÑéÎó²î·¶Î§ÄÚ£¬$\frac{s}{{V}^{2}}$ÊÇÒ»³£Êý£¬ËµÃ÷»¬¿éÑØÐ±ÃæÏ»¬ÊÇ×öÔȱäËÙÖ±ÏßÔ˶¯£®
| ´ÎÊý | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| s £¨m£© | 4.5 | 3.9 | 3.0 | 2.1 | 1.5 | 0.9 | 0.3 | |
| V£¨mL£© | 90 | 84 | 72 | 62 | 52 | 40 | 23.5 | |
| $\frac{s}{{V}^{2}}$ | 5.6¡Á10-4 | 5.5¡Á10-4 | 5.8¡Á10-4 | 5.5¡Á10-4 | 5.6¡Á10-4 | 5.6¡Á10-4 | 5.4¡Á10-4 | |
·ÖÎö ¹ØÓÚ³õËÙ¶ÈΪÁãµÄÔȱäËÙÔ˶¯£¬Î»ÒÆÓëʱ¼äµÄ¶þ´Î·½³ÉÕý±È£¬ÓÉÓÚË®ÊǾùÔÈÎȶ¨µÄÁ÷³ö£¬Ë®µÄÌå»ýºÍʱ¼ä³ÉÕý±È£¬ËùÒÔ¸ÃʵÑéÖ»ÒªÑéÖ¤Î»ÒÆÓëÌå»ýµÄ¶þ´Î·½ÊÇ·ñ³ÉÕý±È£¬¾Í¿ÉÑéÖ¤¸ÃÔ˶¯ÊÇ·ñÔȱäËÙÖ±ÏßÔ˶¯£®
½â´ð ½â£º£¨1£©¹ØÓÚ³õËÙ¶ÈΪÁãµÄÔȱäËÙÔ˶¯£¬Î»ÒÆÓëʱ¼äµÄ¶þ´Î·½³ÉÕý±È£¬ÓÉÓÚË®ÊǾùÔÈÎȶ¨µÄÁ÷³ö£¬Ë®µÄÌå»ýºÍʱ¼ä³ÉÕý±È£¬ËùÒÔÁ¿Í²ÖÐÊÕ¼¯µÄË®Á¿¿ÉÒÔ¼ä½ÓµÄ²âÁ¿Ê±¼ä£®
£¨2£©ÑéÖ¤¸ÃÔ˶¯ÊÇ·ñÔȱäËÙÖ±ÏßÔ˶¯£¬¹Ø¼ü¿´Î»ÒÆÓëʱ¼äµÄ¶þ´Î·½ÊÇ·ñ³ÉÕý±È£¬¼´¿´Î»ÒÆÓëÌå»ýµÄ¶þ´Î·½ÊÇ·ñ³ÉÕý±È£®ËùÒÔ¸ù¾Ý$\frac{s}{t}$ÔÚÎó²îµÄ·¶Î§ÄÚÊÇÒ»³£Êý£¬¿ÉÒԵóö»¬¿éÑØÐ±ÃæÏ»¬ÊÇ×öÔȱäËÙÖ±ÏßÔ˶¯µÄ½áÂÛ£®
£¨3£©±¾ÊµÑéÎó²îµÄÖ÷ÒªÀ´Ô´ÓУºË®´ÓË®ÏäÖÐÁ÷³ö²»¹»Îȶ¨£¬»¹¿ÉÄÜÀ´Ô´ÓÚ¾àÀë²âÁ¿µÄ²»×¼È·£¬»¬¿é¿ªÊ¼Ï»¬ºÍ¿ªÊ¼Á÷Ë®²»Í¬²½£®
¹Ê±¾Ìâ´ð°¸Îª£º£¨1£©Ê±¼ä£»
£¨2£©ÔÚʵÑéÎó²î·¶Î§ÄÚ£¬$\frac{s}{{V}^{2}}$ÊÇÒ»³£Êý£»
£¨3£©Ð±ÃæÄ¦²Á²»¾ùÔÈ¡¢Ë®Á¿²âÁ¿²»×¼È·¡¢»¬¿é¿ªÊ¼Ï»¬ºÍ¿ªÊ¼Á÷Ë®²»Í¬²½¡¢»¬¿éֹͣϻ¬ºÍÍ£Ö¹Á÷Ë®²»Í¬²½£®
µãÆÀ ½â¾ö¸ÃÎÊÌâµÄ¹Ø¼ü°Ñʱ¼äת»¯ÎªË®Á¿£¬ÒòΪÁ÷ÈëÁ¿Í²Ë®µÄÁ¿Óëʱ¼ä³ÉÕý±È£®
| A£® | Ëٶȵı仯Á¿´ó£¬¼ÓËÙ¶ÈÒ»¶¨´ó | |
| B£® | ¼ÓËٶȵķ½ÏòÒ»¶¨ºÍËٶȱ仯Á¿·½ÏòÏàͬ | |
| C£® | Ëٶȵķ½ÏòÓë¼ÓËÙ¶È·½Ïò²»¿ÉÄÜ´¹Ö± | |
| D£® | ËÙ¶ÈΪÁãʱ¼ÓËÙ¶ÈÒ²Ò»¶¨ÎªÁã |
| A£® | F1¡¢F2¾ù¼õС | B£® | F1¡¢F2¾ùÔö´ó | C£® | F1¼õС£¬F2Ôö´ó | D£® | F1Ôö´ó£¬F2¼õС |
| A£® | 3£º1 | B£® | 1£º3 | C£® | 1£º$\sqrt{3}$ | D£® | $\sqrt{3}$£º1 |
| A£® | ζȸߵÄÎïÌåÄÚÄÜÒ»¶¨´ó | |
| B£® | ÎïÌåµÄζÈÔ½¸ß£¬Ëùº¬µÄÈÈÁ¿Ô½¶à | |
| C£® | ÄÚÄÜÉÙµÄÎïÌåÒ²¿ÉÄܽ«ÄÜÁ¿´«¸øÄÚÄܶàµÄÎïÌå | |
| D£® | ÎïÌåµÄÄÚÄÜÓëζÈÓйأ¬Ö»ÒªÎ¶Ȳ»±ä£¬ÎïÌåµÄÄÚÄܾÍÒ»¶¨²»±ä |
| A£® | x=v0t+$\frac{1}{2}$at2 | B£® | x=$\frac{{v}^{2}-{{v}_{0}}^{2}}{2a}$ | C£® | x=$\frac{1}{2}$at2 | D£® | x=$\frac{{v}_{0}+v}{2}$t |