题目内容
14.(1)人与滑板离开平台时的水平初速度
(2)人与滑板落到B点时的速度.
分析 (1)滑板爱好离开平台做平抛运动,根据高度求出平抛运动的时间,结合水平位移和时间求出平抛运动的初速度.
(2)根据速度时间公式求出落地的竖直分速度,结合平行四边形定则求出落地时的速度.
解答 解:(1)根据h=$\frac{1}{2}g{t}^{2}$
得:t=$\sqrt{\frac{2h}{g}}$=$\sqrt{\frac{2×1.25}{10}}$=0.5s
水平初速度为:v0=$\frac{S}{t}$=$\frac{2.5}{0.5}$m/s=5m/s.
(2)落地的竖直分速度为:vy=gt=10×0.5m/s=5m/s,
则落地的速度为:v=$\sqrt{2}{v}_{0}$=5$\sqrt{2}$m/s.
因为tanα=$\frac{{v}_{y}}{{v}_{0}}$=1,方向与水平方向的夹角为45°.
答:
(1)人与滑板离开平台时的水平初速度大小为5m/s;
(2)该滑板爱好者落地时的速度为5$\sqrt{2}$m/s,方向与水平方向的夹角为45°.
点评 解决本题的关键知道平抛运动在水平方向和竖直方向上的运动规律,结合运动学公式灵活求解.
练习册系列答案
相关题目
4.地球赤道上有一物体随地球的自转而做圆周运动,向心加速度为a1,线速度为v1,角速度为ω1;同步卫星的向心加速度为a2,线速度为v2,角速度为ω2;“神州”六号飞船(距地面高度343km)的向心加速度为a3,线速度为v3,角速度为ω3.则( )
| A. | a1>a2>a3 | B. | a3>a2>a1 | C. | v3>v2>v1 | D. | ω3>ω2=ω1 |
2.
如图所示,运动员在粗糙塑胶跑道上负重起跑训练.较粗弹性橡皮条一端套在运动员的腰上,另一端系在加重汽车轮胎上,起跑过程可简化如下:运动员起跑拉动橡皮条使其变长,稍后轮胎在橡皮条牵引下开始运动,最后轮胎与运动员一起运动.在负重起跑时,橡皮条从原长拉伸到最长过程中,下列说法正确的是( )
| A. | 橡皮条减小的弹性势能等于轮胎动能的增加量 | |
| B. | 橡皮条对轮胎做的正功等于轮胎动能的增加量 | |
| C. | 橡皮条对人做负功,橡皮条的弹性势能增加 | |
| D. | 橡皮条对轮胎做正功,橡皮条的弹性势能减小 |
9.
风洞实验室中可产生竖直向上的风力,如图所示将一个小球用细线拴住放入风洞实验室中,使小球在竖直平面内做圆周运动,则下列说法中正确的是( )
| A. | 小球不可能做匀速圆周运动 | |
| B. | 当小球运动到最高点a时,线的张力一定最大 | |
| C. | 当小球运动到最低点b时,小球的速度一定最大 | |
| D. | 小球在a、b两点时线的拉力大小可能相等 |
19.关于电磁感应现象,下列说法中正确的是( )
| A. | 只要闭合电路中有磁通量,闭合电路中就有感应电流产生 | |
| B. | 只要闭合线圈做切割磁感线运动,电路中就一定有感应电流 | |
| C. | 穿过线圈的磁通量越大,感应电动势越大 | |
| D. | 穿过线圈的磁通量变化越快,感应电动势越大 |
6.
如图所示的电路中,A1和A2是完全相同的小灯泡,线圈L的直流电阻等于小灯泡电阻,下列说法中正确的是( )
| A. | 闭合开关K,A2马上变亮,A1逐渐变亮,最后一样亮 | |
| B. | 闭合开关K,A1和A2始终一样亮 | |
| C. | 断开开关K时,A2立刻熄灭,A1闪一下再熄灭 | |
| D. | 断开开关K瞬间,A1和A2的亮度相同 |
3.在匀强磁场中,一矩形金属线框绕与磁感线垂直的转动轴匀速转动,如图甲所示.产生的交变电动势随时间变化的规律如图乙所示.则下列说法正确的是( )

| A. | t=0.01s时穿过线框的磁通量最小 | |
| B. | 该交变电动势的有效值为11$\sqrt{2}$V | |
| C. | 该交变电动势的瞬时值表达式为e=22$\sqrt{2}$sin(100πt)V | |
| D. | 电动势瞬时值为11$\sqrt{2}$V时,线圈平面与中性面的夹角为45° |
5.下列说法正确的是( )
| A. | 物体的速度越大,则加速度越大 | |
| B. | 匀变速直线运动是加速度不变的直线运动 | |
| C. | 惯性是物体的固有属性,速度大的物体惯性一定大 | |
| D. | 牛顿最早通过理想斜面实验得出力不是维持物体运动的原因 |