题目内容
4.质量为m的子弹以水平速度v1射入沿同一方向以速度v2运动的木块中,木块的质量为M.当子弹进入木块中的深度为d时,子弹和木块的速度分布为v1′和v2′.若木块和子弹的相互作用力为F,木块与水平面间的摩擦不计,试求这一过程中子弹和木块组成的系统损失的动能.(用F和d表示)分析 解答本题要明确,摩擦力与相对位移的乘积等于系统能量的损失.注意认真审题,明确题目要求.
解答 解:根据能量守恒得,摩擦力与相对位移的乘积等于系统能量的损失,故损失的动能△Ek=Fd;
答:这一过程子弹和木块损失的动能为Fd.
点评 本题考查功能关系,要注意正确应用,系统损失的机械能等于摩擦力与相对位移的乘积.
练习册系列答案
相关题目
14.关于动量和冲量,下列说法正确的是( )
| A. | 冲量的方向,就是物体运动的方向 | |
| B. | 冲量反映了力的作用对时间的累积效应,是一个标量 | |
| C. | 只要物体运动的速度大小不变,物体的动量也保持不变 | |
| D. | 质量一定的物体,动量变化越大,该物体的速度变化一定越大 |
19.假设我国发射的一颗探月卫星绕月球做匀速圆周运动,卫星的轨道半径为r,运动周期为T,月球半径为R,引力常量为G,根据上述已知条件可得到( )
| A. | 卫星的加速度为$\frac{{4π}^{2}}{T^2}$(R+r) | |
| B. | 卫星绕月球做匀速圆周运动的线速度为$\frac{2πR}{T}$ | |
| C. | 月球的质量为$\frac{{{4π}^{2}{r}^{3}}}{{GT}^{2}}$ | |
| D. | 月球表面的重力加速度为$\frac{{{4π}^{2}{r}^{3}}}{{{T}^{2}{R}^{2}}}$ |
8.为了探测某星球,载着登陆舱的探测飞船在以该星球中心为圆心、半径为r1的圆轨道上运动,周期为T1,总质量为m1.随后登陆舱脱离飞船,变轨到离该星球更近的半径为r2的圆轨道上运动,此时登陆舱的质量为m2,则下列说法正确的是( )
| A. | 该星球的质量为M=$\frac{{4π2{γ_1}}}{{GT{\;}_2}}$ | |
| B. | 登陆舱在半径为r1与半径为r2的轨道上运动时的速度大小之比为$\frac{v_1}{v_2}$=$\sqrt{\frac{{r}_{2}}{{r}_{1}}}$ | |
| C. | 该星球表面的重力加速度为g=$\frac{{4{π^2}{γ_1}}}{T_1^2}$ | |
| D. | 登陆舱在半径为r2的轨道上做圆周运动的周期为T2=T1$\sqrt{\frac{{{γ_2}^3}}{{{γ_1}^3}}}$ |
9.
2011年3月11日,日本东北地区发生里氏9.0级大地震,并引发海啸.某网站发布了日本地震前后的卫星图片,据了解该组图片是由两颗卫星拍摄得到的.这两颗卫星均绕地心O做匀速圆周运动,轨道半径均为r,某时刻两颗卫星分别位于轨道上空的A、B两位置,两卫星与地心的连线间的夹角为60°,如图所示.若卫星均沿顺时针方向运行,地球表面处的重力加速度为g,地球半径为R,不计卫星间的相互作用力.下列判断不正确的是( )
| A. | 卫星1由位置A运动到位置B的过程中,它所受的万有引力做功不为零 | |
| B. | 卫星2向后喷气就无法追上卫星1 | |
| C. | 这两颗卫星的加速度大小均为$\frac{{R}^{2}g}{{r}^{2}}$ | |
| D. | 卫星1由位置A第一次运动到位置B所用的时间为$\frac{πr}{3R}$$\sqrt{\frac{r}{g}}$ |