ÌâÄ¿ÄÚÈÝ
7£®£¨1£©ÔÈÇ¿µç³¡³¡Ç¿E£»
£¨2£©ÔÈÇ¿´Å³¡´Å¸ÐӦǿ¶ÈB£®
·ÖÎö ´øÕýµçÁ£×ÓÔڵ糡ÖÐÀàÆ½Å×Ô˶¯£¬¿É·Ö½âΪˮƽ·½ÏòµÄÔȼÓËÙÖ±ÏßÔ˶¯ºÍÊúÖ±·½ÏòµÄÔÈËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó¼ÓËÙ¶È£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½Áгö·½³Ì¼´¿ÉÇó½â£®½øÈë´Å³¡×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦³äµ±ÏòÐÄÁ¦£¬¸ù¾Ý¼¸ºÎ¹ØÏµÇó³ö°ë¾¶»³ö¹ì¼£Í¼£¬Çó³ö´Å¸ÐӦǿ¶È£®
½â´ð
½â£º£¨1£©Á£×Ó´ÓMµãÊúÖ±ÏòÏÂÉäÈëµç³¡×öÀàÆ½Å×Ô˶¯£¬Ë®Æ½·½ÏòÔȼÓËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉqE=ma
ˮƽ·½Ïò£º$L=\frac{1}{2}a{t}_{\;}^{2}$
ÊúÖ±·½Ïò£º$2L={v}_{0}^{\;}t$
ÁªÁ¢ÒÔÉϸ÷ʽ½âµÃ$E=\frac{m{v}_{0}^{2}}{2qL}$
£¨2£©Á£×Óµ½´ïAµãʱ${v}_{y}^{\;}=at=\frac{qE}{m}t={v}_{0}^{\;}$
${v}_{A}^{\;}=\sqrt{{v}_{0}^{2}+{v}_{y}^{2}}=\sqrt{2}{v}_{0}^{\;}$
Á£×Ó½øÈë´Å³¡×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦$q{v}_{A}^{\;}B=m\frac{{v}_{A}^{2}}{R}$
½âµÃ$R=\frac{m{v}_{A}^{\;}}{qB}=\frac{\sqrt{2}m{v}_{0}^{\;}}{qB}$
×÷³öÁ£×ÓÔ˶¯µÄ¹ì¼£Í¼£¬¸ù¾Ý¼¸ºÎ¹ØÏµµÃ$R=\sqrt{2}L$
ÁªÁ¢ÒÔÉϸ÷ʽµÃ$B=\frac{m{v}_{0}^{\;}}{qL}$
´ð£º£¨1£©ÔÈÇ¿µç³¡³¡Ç¿EΪ$\frac{m{v}_{0}^{2}}{2qL}$£»
£¨2£©ÔÈÇ¿´Å³¡´Å¸ÐӦǿ¶ÈBΪ$\frac{m{v}_{0}^{\;}}{qL}$£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇŪÇåÔ˶¯¹ý³Ì£¬»³ö¹ì¼££¬µç³¡ÖÐÀàÆ½Å×Ô˶¯£¬ÔËÓûù±¾µÄÔ˶¯Ñ§¹æÂÉÇó½â£¬´Å³¡ÖÐÒªÊìÁ·ÕÆÎÕ×óÊÖ¶¨Ôò£¬°ë¾¶¹«Ê½¼°¼¸ºÎ¹ØÏµ£¬ÊôÓÚ»ù±¾ÔËÓã®
| A£® | µ±±ÕºÏµç·×öÇиî´Å¸ÐÏßÔ˶¯£¬µç·ÖоÍÒ»¶¨ÓиÐÓ¦µçÁ÷ | |
| B£® | µ±±ÕºÏµç·¾²Ö¹£¬µç·ÖоÍÒ»¶¨Ã»ÓиÐÓ¦µçÁ÷ | |
| C£® | Ö»Òª´©¹ý±ÕºÏµç·µÄ´Å¸ÐÏßÌõÊý·¢Éú±ä»¯£¬±ÕºÏµç·ÖоÍÓиÐÓ¦µçÁ÷ | |
| D£® | Ö»Òª±ÕºÏµç·ÄÚÓдÅͨÁ¿£¬±ÕºÏµç·ÖоÍÓиÐÓ¦µçÁ÷ |
| A£® | ÎïÌåÖØÁ¦ÊÆÄÜÔö¼Ó$\frac{4}{3}$mgh | B£® | ÎïÌåµÄ»úеÄܼõÉÙ$\frac{1}{3}$mgh | ||
| C£® | ÖØÁ¦¶ÔÎïÌå×ö¹¦-$\frac{4}{3}$mgh | D£® | ÎïÌåµÄ¶¯ÄÜÔö¼Ó$\frac{4}{3}$mgh |
| A£® | 500J | B£® | 400J | C£® | 320J | D£® | 200J |
| A£® | ×Ô¸ÐÏÖÏóÊDZäѹÆ÷¹¤×÷µÄ»ù´¡ | |
| B£® | ¸ßƵµçÁ÷²úÉúµÄÎÐÁ÷¿ÉÒÔÓÃÀ´Ò±Á¶ºÏ½ð | |
| C£® | ½»Á÷¸ÐÓ¦µç¶¯»úÊÇÀûÓõç´ÅÇý¶¯ÔÀí¹¤×÷µÄ | |
| D£® | ¶¯È¦Ê½»°Í²ÀûÓÃÁ˵ç´Å¸ÐÓ¦ÔÀí |
| A£® | Ò»¸öµçÁ÷±íºÍÒ»¸öµç×èÏä | |
| B£® | Ò»¸öµçѹ±í¡¢Ò»¸öµçÁ÷±íºÍÒ»¸ö»¬¶¯±ä×èÆ÷ | |
| C£® | Ò»¸öµçѹ±íºÍÒ»¸öµç×èÏä | |
| D£® | Ò»¸öµçÁ÷±íºÍÒ»¸ö±ä×èÆ÷ |