ÌâÄ¿ÄÚÈÝ
14£®£¨1£©Ð¡ÇòÔÚ×î¸ßµãCµÄËÙÂÊvC£»
£¨2£©Ð¡Çò¾¹ýBµãʱ¶Ô¹ìµÀµÄѹÁ¦£»
£¨3£©Å×ÉäËÙ¶ÈvAÓëµØÃæ¼äµÄ¼Ð½Ç¦È¼°A¡¢BÁ½µã¼äµÄ¾àÀës£®
·ÖÎö £¨1£©ÔÚCµãÓ¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â£»
£¨2£©¶ÔBµ½CµÄÔ˶¯¹ý³ÌÓ¦ÓûúеÄÜÊØºãÇóµÃÔÚBµãµÄËÙ¶È£¬È»ºóÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇóµÃÖ§³ÖÁ¦£¬¼´¿ÉÓÉÅ£¶ÙµÚÈý¶¨ÂÉÇóµÃѹÁ¦£»
£¨3£©¸ù¾Ý´ÓAµ½BµÄÔ˶¯£¬ÓÉÔ˶¯¡¢ËٶȺͷֽâÀ´·ÖÎöÇó½â£®
½â´ð ½â£º£¨1£©Ð¡Çò×îÖÕÇ¡Äܵ½´ï×î¸ßµãC£¬ÄÇô¶ÔСÇòÔÚCµãÓ¦ÓÃÅ£¶ÙµÚ¶þ¶¨Âɿɵãº$mg=\frac{m{{v}_{C}}^{2}}{r}$£¬ËùÒÔ£¬${v}_{C}=\sqrt{gr}=\sqrt{6}m/s$£»
£¨2£©Ð¡Çò´ÓBµ½CÖ»ÓÐĦ²ÁÁ¦¡¢ÖØÁ¦×ö¹¦£¬Óɶ¯Äܶ¨Àí¿ÉµÃ£º$-2mgr-{W}_{f}=\frac{1}{2}m{{v}_{C}}^{2}-\frac{1}{2}m{{v}_{B}}^{2}$£¬ËùÒÔ£¬${v}_{B}=\sqrt{{{v}_{C}}^{2}+4gr+\frac{2{W}_{f}}{m}}=6m/s$£»
¶ÔСÇòÔÚBµãÓ¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂɿɵãºÐ¡ÇòÊܵ½¹ìµÀµÄÖ§³ÖÁ¦${F}_{N}=mg+\frac{m{{v}_{B}}^{2}}{r}=7N$£¬·½ÏòÊúÖ±ÏòÉÏ£»
ÄÇô£¬ÓÉÅ£¶ÙµÚÈý¶¨ÂÉ¿ÉÖª£ºÐ¡Çò¾¹ýBµãʱ¶Ô¹ìµÀµÄѹÁ¦Îª7N£¬·½ÏòÊúÖ±ÏòÏ£»
£¨3£©Ð¡Çò´ÓAµ½B£¬ÔÚˮƽ·½Ïò×öÔÈËÙÔ˶¯£¬ÔÚÊúÖ±·½Ïò×ö¼ÓËÙ¶ÈΪgµÄÔȼõËÙÔ˶¯£¬
ËùÒÔÓУºvB=vAcos¦È£¬ÄÇô£¬¦È=53¡ã£¬AµÄËٶȵÄÊúÖ±·ÖÁ¿Îªvy=vAsin¦È=8m/s£»
ËùÒÔ£¬Ð¡Çò´ÓAµ½BµÄÔ˶¯Ê±¼ä$t=\frac{{v}_{y}}{g}=0.8s$£¬Ë®Æ½Î»ÒÆx=vBt=4.8m£¬ÊúÖ±Î»ÒÆ$y={v}_{y}t-\frac{1}{2}g{t}^{2}=3.2m$£»
ËùÒÔ£¬$s=\sqrt{{x}^{2}+{y}^{2}}=1.6\sqrt{13}$m£»
´ð£º£¨1£©Ð¡ÇòÔÚ×î¸ßµãCµÄËÙÂÊvCΪ$\sqrt{6}m/s$£»
£¨2£©Ð¡Çò¾¹ýBµãʱ¶Ô¹ìµÀµÄѹÁ¦Îª7N£¬·½ÏòÊúÖ±ÏòÏ£»
£¨3£©Å×ÉäËÙ¶ÈvAÓëµØÃæ¼äµÄ¼Ð½Ç¦ÈΪ53¡ã£¬A¡¢BÁ½µã¼äµÄ¾àÀësΪ$1.6\sqrt{13}m$£®
µãÆÀ ¾µäÁ¦Ñ§ÎÊÌâÒ»°ãÏȶÔÎïÌå½øÐÐÊÜÁ¦·ÖÎö£¬ÇóµÃºÏÍâÁ¦¼°Ô˶¯¹ý³Ì×ö¹¦Çé¿ö£¬È»ºó¸ù¾ÝÅ£¶Ù¶¨ÂÉ¡¢¶¯Äܶ¨Àí¼°¼¸ºÎ¹ØÏµÇó½â£®
| A£® | Îï¿éA¡¢BÔ˶¯µÄ¼ÓËÙ¶È´óС²»Í¬ | |
| B£® | Îï¿éAÏȵ½´ï´«ËÍ´øµ×¶Ë | |
| C£® | Îï¿éA¡¢BÔ˶¯µ½´«ËÍ´øµ×¶ËÊ±ÖØÁ¦µÄ¹¦ÂÊÏàµÈ | |
| D£® | Îï¿éA¡¢BÔÚ´«ËÍ´øÉϵĻ®ºÛ³¤¶ÈÖ®±ÈΪ1£º4 |
| A£® | XÊÇÖÐ×Ó£¬¸Ã·´Ó¦ÊÍ·ÅÄÜÁ¿£¬·Å³ö18.27¡Á1016JÄÜÁ¿ | |
| B£® | XÊÇÖÐ×Ó£¬¸Ã·´Ó¦ÊÍ·ÅÄÜÁ¿£¬·Å³ö18.90MevÄÜÁ¿ | |
| C£® | XÊÇÖÊ×Ó£¬¸Ã·´Ó¦ÎüÊÕÄÜÁ¿£¬ÎüÊÕ18.90MevÄÜÁ¿ | |
| D£® | XÊÇÖÐ×Ó£¬¸Ã·´Ó¦ÎüÊÕÄÜÁ¿£¬ÎüÊÕ18.27¡Á1016JÄÜÁ¿ |