ÌâÄ¿ÄÚÈÝ
4£®| A£® | µ±×ªËÙÔö´óʱ£¬CÏÈ¿ªÊ¼»¬¶¯ | |
| B£® | CÓëת̨¼äµÄĦ²ÁÁ¦µÈÓÚAÓëB¼äµÄĦ²ÁÁ¦µÄÒ»°ë | |
| C£® | ת̨µÄ½ÇËÙ¶ÈÒ»¶¨Âú×㣺¦Ø¡Ü$\sqrt{\frac{2¦Ìg}{3r}}$ | |
| D£® | ת̨µÄ½ÇËÙ¶ÈÒ»¶¨Âú×㣺¦Ø¡Ü$\sqrt{\frac{¦Ìg}{3r}}$ |
·ÖÎö AËæ×ªÌ¨Ò»ÆðÒÔ½ÇËٶȦØÔÈËÙת¶¯£¬¿¿¾²Ä¦²ÁÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öB¶ÔAµÄĦ²ÁÁ¦´óС£®·Ö±ð¶ÔA¡¢ABÕûÌå¡¢CÊÜÁ¦·ÖÎö£¬¸ù¾ÝºÏÁ¦ÌṩÏòÐÄÁ¦£¬Çó³öת̨½ÇËٶȵķ¶Î§
½â´ð ½â£ºA¡¢Ä¦²ÁÁ¦ÌṩÎïÌå×öÔ²ÖÜÔ˶¯ËùÐèÒªµÄÏòÐÄÁ¦£¬CËùÐèÒªµÄÏòÐÄÁ¦¦Ìmg=m¦Ø2¡Á1.5r=1.5m¦Ø2r£¬¹ÊCÏÈ»¬¶¯£¬¹ÊAÕýÈ·£®
B¡¢ÓÉÓÚAÓëCת¶¯µÄ½ÇËÙ¶ÈÏàͬ£¬¶ÔC£¬ÓÉĦ²ÁÁ¦ÌṩÏòÐÄÁ¦£¬ÓÐfC=m¡Á1.5r¦Ø2=$\frac{1}{2}$fA£¬¼´CÓëת̨¼äµÄĦ²ÁÁ¦µÈÓÚAÓëB¼äµÄĦ²ÁÁ¦µÄÒ»°ë£¬¹ÊBÕýÈ·£»
CD¡¢¶ÔABÕûÌ壬ÓУº£¨3m+2m£©¦Ø2r¡Ü¦Ì£¨3m+2m£©g¡¢Ù
¶ÔÎïÌåC£¬ÓУºm¦Ø2£¨1.5r£©¡Ü¦Ìmg¡¢Ú
¶ÔÎïÌåA£¬ÓУº3m¦Ø2r¡Ü¦Ì£¨3m£©g¡¢Û
ÁªÁ¢¢Ù¢Ú¢Û½âµÃ£º¦Ø¡Ü$\sqrt{\frac{2¦Ìg}{3r}}$£®¹ÊCÕýÈ·£¬D´íÎó£®
±¾ÌâÑ¡´íÎóµÄ£¬¹ÊÑ¡£ºD
µãÆÀ ±¾Ìâ¹Ø¼üÒªÁé»îѡȡÑо¿¶ÔÏ󣬷ֱð¶ÔA¡¢ABÕûÌå¡¢CÊÜÁ¦·ÖÎö£¬¸ù¾Ý¾²Ä¦²ÁÁ¦ÌṩÏòÐÄÁ¦ÒÔ¼°×î´ó¾²Ä¦²ÁÁ¦µÈÓÚ»¬¶¯Ä¦²ÁÁ¦ÁÐʽ·ÖÎö
| A£® | ÎïÌåµÄ¼ÓËÙ¶ÈÊÇ2 m/s2 | B£® | ÎïÌåÁãʱ¿ÌµÄËÙ¶ÈÊÇ3 m/s | ||
| C£® | µÚ1sÄ򵀮½¾ùËÙ¶ÈÊÇ6 m/s | D£® | ÈκÎ1sÄÚµÄËٶȱ仯Á¿¶¼ÊÇ2 m/s |
| A£® | B£® | C£® | D£® |
| A£® | ÒòΪ v=$\sqrt{gR}$£¬ËùÒÔ»·ÈÆËÙ¶ÈËæ RÔö´ó¶øÔö´ó | |
| B£® | ÒòΪ v=¦ØR£¬ËùÒÔ»·ÈÆËÙ¶ÈËæ RÔö´ó¶øÔö´ó | |
| C£® | ÒòΪ F=$\frac{GMm}{{R}^{2}}$£¬ËùÒÔµ± RÔö´óµ½ÔÀ´µÄ2±¶Ê±£¬ÎÀÐÇËùÐèµÄÏòÐÄÁ¦¼õΪÔÀ´µÄ$\frac{1}{4}$ | |
| D£® | ÒòΪ F=$\frac{m{v}^{2}}{R}$£¬ËùÒÔµ± RÔö´óµ½ÔÀ´µÄ2±¶Ê±£¬ÎÀÐÇËùÐèµÄÏòÐÄÁ¦¼õΪÔÀ´µÄ$\frac{1}{2}$ |
| A£® | 1s£¬10m/s | B£® | 2s£¬15m/s | C£® | 3s£¬-10 m/s | D£® | £¨2+$\sqrt{7}$£©s-10$\sqrt{7}$s m/s |