ÌâÄ¿ÄÚÈÝ
20£®Èçͼ1Ëùʾ£¬ÔÚxOyÆ½ÃæµÄµÚÒ»¡¢ËÄÏóÏÞÄÚ´æÔÚ×Å·½Ïò´¹Ö±Ö½ÃæÏòÍ⣬´Å¸ÐӦǿ¶ÈΪBµÄÔÈÇ¿´Å³¡£¬ÔÚµÚËÄÏóÏÞÄÚ´æÔÚ·½ÏòÑØ-y·½Ïò¡¢µç³¡Ç¿¶ÈΪEµÄÔÈÇ¿µç³¡£®´ÓyÖáÉÏ×ø±êΪ£¨0£¬a£©µÄPµãÏò´Å³¡Çø·¢ÉäËÙ¶È´óС²»µÈµÄ´øÕýµçͬÖÖÁ£×Ó£¬ËÙ¶È·½Ïò·¶Î§ÊÇÓë+y·½Ïò³É30¡ã-150¡ã½Ç£¬ÇÒÔÚxOyÆ½ÃæÄÚ£®½á¹ûËùÓÐÁ£×Ó¾¹ý´Å³¡Æ«×ªºó¶¼´¹Ö±´òµ½xÖáÉÏ£¬È»ºó½øÈëµÚËÄÏóÏÞÄÚµÄÕý½»µç´Å³¡Çø£®ÒÑÖª´øµçÁ£×ÓµçÁ¿Îª+q£¬ÖÊÁ¿Îªm£¬Á£×ÓÖØÁ¦²»¼Æ£®£¨1£©ËùÓÐͨ¹ýµÚÒ»ÏóÏ޴ų¡ÇøµÄÁ£×ÓÖУ¬ÇóÁ£×Ó¾ÀúµÄ×î¶Ìʱ¼äÓë×ʱ¼äµÄ±ÈÖµ£»
£¨2£©ÇóÁ£×Ó´òµ½xÖáÉϵķ¶Î§£»
£¨3£©´ÓxÖáÉÏx=aµãÉäÈëµÚËÄÏóÏÞµÄÁ£×Ó´©¹ýÕý½»µç´Å³¡ºó´ÓyÖáÉÏy=-bµÄQµãÉä³öµç´Å³¡£¬Çó¸ÃÁ£×ÓÉä³öµç´Å³¡Ê±µÄËÙ¶È´óС£®
·ÖÎö £¨1£©ÓÉÌâÒ⣬ËùÓÐÁ£×Ó¾¹ý´Å³¡Æ«×ªºó¶¼´¹Ö±´òµ½xÖáÉÏ£¬ÏÈÕÒ³öÁ½¸ö±ß½çÉϵÄÁ£×Ó£¬·ÖÎöÔÚµÚÒ»ÏóÏÞÄÚµÄÔ˶¯Çé¿ö£¬¿ÉÖªÓëyÖáÕý·½Ïò³É30¡ãµÄÁ£×ÓÔ˶¯Ê±¼ä×£¬ÓëyÖáÕý·½Ïò³É150¡ãµÄÁ£×ÓÔ˶¯Ê±¼ä×î¶Ì£®Óɼ¸ºÎ֪ʶ¿ÉÈ·¶¨Á£×ÓµÄËÙ¶ÈÆ«Ïò½Ç¦È×îСֵºÍ×î´óÖµ£¬¶øËÙ¶ÈµÄÆ«Ïò½ÇµÈÓڹ켣µÄÔ²ÐĽǦȣ¬¸ù¾Ýt=$\frac{¦È}{2¦Ð}$T£¬¼´µÃµ½Á£×ÓÔڴų¡ÖеÄ×î¶Ìʱ¼äºÍ×ʱ¼ä£¬È»ºóÇó³ö±ÈÖµ£®
£¨2£©ÀûÓôøµçÁ£×ÓÔÚÓб߽çµÄÔÈÇ¿´Å³¡ÖÐ×öÔ²ÖÜÔ˶¯Ê±È·¶¨Ô²ÐĺͰ뾶µÄ·½·¨£¬·Ö±ðÇó³öÁ½ÖÖÁ£×Ó¾¹ýxÖáʱ¾à×ø±êÔµãµÄ¾àÀ룬´Ó¶ø¿É±íʾ³öÁ£×Ó´òµ½ x ÖáÉϵķ¶Î§£®
£¨3£©Óɼ¸ºÎ¹ØÏµ¿ÉµÃ³öÁ£×Ó´Ó-bµãÀ뿪Ëù¶ÔÓ¦µÄÔ²ÖÜÔ˶¯µÄ°ë¾¶£¬Óɰ뾶¹«Ê½¿ÉÇóµÃÁ£×ÓµÄËÙ¶È£¬È»ºóÓ¦Óö¯Äܶ¨ÀíÇó³öÁ£×ÓËÙ¶È£®
½â´ð ½â£º£¨1£©ËùÓÐÁ£×ÓÔÚµÚÒ»ÏóÏÞÄÚÔ˶¯Ê±£¬ÓëyÖáÕý·½Ïò³É150¡ãµÄÁ£×ÓÔ˶¯Ê±¼ä×î¶Ì£¬ÆäËÙ¶ÈµÄÆ«Ïò½ÇΪ$\frac{¦Ð}{6}$£¬×î¶Ìʱ¼äΪ£ºtmin=$\frac{\frac{¦Ð}{6}}{2¦Ð}$T=$\frac{1}{12}$T£¬
ËùÓÐÁ£×ÓÔÚµÚÒ»ÏóÏÞÄÚÔ˶¯Ê±£¬ÓëyÖáÕý·½Ïò³É30¡ãµÄÁ£×ÓÔ˶¯Ê±¼ä×£¬ÆäËÙ¶ÈµÄÆ«Ïò½ÇΪ$\frac{5¦Ð}{6}$£¬×ʱ¼äΪ£ºtmax=$\frac{\frac{5¦Ð}{6}}{2¦Ð}$T=$\frac{5}{12}$T£¬
Á£×Ó¾ÀúµÄ×î¶Ìʱ¼äÓë×ʱ¼äµÄ±ÈÖµ£º$\frac{{t}_{min}}{{t}_{max}}$=$\frac{\frac{1}{12}T}{\frac{5}{12}T}$=$\frac{1}{5}$£»
£¨2£©ÓëyÖá¼Ð½Ç150¡ãÈëÉäµÄÁ£×ӹ켣°ë¾¶Îª£ºR1=$\frac{a}{sin30¡ã}$=2a£¬
´òÔÚ×î×ó±ßµÄ×ø±êÊÇ x1=R1£¨1-cos30¡ã£©=£¨2-$\sqrt{3}$£©a£¬
ÓëyÖá¼Ð½ÇΪ30¡ãµÄÁ£×ӹ켣°ë¾¶Îª R2=$\frac{a}{sin30¡ã}$=2a
´òÔÚ×îÓұߵÄ×ø±êÊÇ x2=R2£¨1+cos30¡ã£©=£¨2+$\sqrt{3}$£©a£¬
Á£×Óͨ¹ýxÖáʱµÄλÖ÷¶Î§ÊÇ£º£¨2-$\sqrt{3}$£©a¡Üx¡Ü£¨2+$\sqrt{3}$£©a£»
£¨3£©´ÓxÖáÉÏx=aµãÉäÈëµÚËÄÏóÏÞµÄÁ£×Ó£¬Á£×ÓÔ˶¯¹ì¼£ÈçͼËùʾ£º![]()
Á£×ÓÔ˶¯µÄÔ²ÐÄÔÚOµã£¬¹ìµÀ°ë¾¶r1=a£¬
Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºqv0B=m$\frac{{v}_{0}^{2}}{{r}_{1}}$£¬½âµÃ£ºv0=$\frac{qBa}{m}$£¬
ÔÚµÚËÄÏóÏÞ£¬¶ÔÁ£×ÓÓɶ¯Äܶ¨ÀíµÃ£ºqEb=$\frac{1}{2}$mv2-$\frac{1}{2}$mv02£¬
½âµÃ£ºv=$\sqrt{\frac{2qEb}{m}+\frac{{q}^{2}{B}^{2}{a}^{2}}{{m}^{2}}}$£»
´ð£º£¨1£©ËùÓÐͨ¹ýµÚÒ»ÏóÏ޴ų¡ÇøµÄÁ£×ÓÖУ¬Á£×Ó¾ÀúµÄ×î¶Ìʱ¼äÓë×ʱ¼äµÄ±ÈֵΪ1£º5£»
£¨2£©Á£×Ó´òµ½xÖáÉϵķ¶Î§ÊÇ£º£¨2-$\sqrt{3}$£©a¡Üx¡Ü£¨2+$\sqrt{3}$£©a£»
£¨3£©´ÓxÖáÉÏx=aµãÉäÈëµÚËÄÏóÏÞµÄÁ£×Ó´©¹ýÕý½»µç´Å³¡ºó´ÓyÖáÉÏy=-bµÄQµãÉä³öµç´Å³¡£¬¸ÃÁ£×ÓÉä³öµç´Å³¡Ê±µÄËÙ¶È´óСΪ$\sqrt{\frac{2qEb}{m}+\frac{{q}^{2}{B}^{2}{a}^{2}}{{m}^{2}}}$£®
µãÆÀ ´øµçÁ£×ÓÔڴų¡ÖеÄÔ˶¯ÀàÌâÄ¿¹Ø¼üÔÚÓÚÕÒ³öÔ²ÐÄÈ·¶¨°ë¾¶£¬ËùÒÔÔÚ½âÌâʱ¼¸ºÎ¹ØÏµÊǹؼü£¬Ó¦Áé»îÓ¦Óü¸ºÎ¹ØÏµ£¬Í¬Ê±½áºÏ»Í¼È¥ÕÒ³öºÏÀíµÄ½âÌâ·½·¨£®
| A£® | ½ðÊô¿éµÄÉϱíÃæµçÊÆ¸ß | B£® | ½ðÊô¿éµÄÉϱíÃæµçÊÆµÍ | ||
| C£® | $\frac{BI}{edU}$ | D£® | $\frac{edU}{IB}$ |
| A£® | ÁíÒ»¿ÅÐǵÄÖÊÁ¿ | |
| B£® | ÿ¿ÅÐǵÄÏßËÙ¶ÈÓë×ÔÉíµÄ¹ìµÀ°ë¾¶³É·´±È | |
| C£® | ÿ¿ÅÐǵÄÖÊÁ¿Óë×ÔÉíµÄÊëµÀ°ë¾¶³ÉÕý±È | |
| D£® | ÿ¿ÅÐǵÄÖÊÁ¿Óë×ÔÉíµÄ¹ìµÀ°ë¾¶³É·´±È |
| A£® | ÈôÔÚAµã»»ÉϵãµçºÉ-q£¬AµãµÄ³¡Ç¿·½Ïò½«ÓëÔÀ´Ïà·´ | |
| B£® | ÈôÔÚAµã»»ÉϵçºÉÁ¿Îª2q µÄµãµçºÉ£¬AµãµÄ³¡Ç¿±äΪ2E | |
| C£® | Èô½«AµãµÄµçºÉÒÆÈ¥£¬AµãµÄ³¡Ç¿±äΪÁã | |
| D£® | Èô½«AµãµÄµçºÉÒÆÈ¥£¬AµãµÄ³¡Ç¿ÈÔΪE |
²¢¼õËÙ½øÈëÒ»¶¨Éî¶ÈµÄË®ÖУ¬ÆäÖÊÁ¿²»±ä£¬Ôò£¨¡¡¡¡£©
| A£® | ¸ÃË鯬ÔÚ¿ÕÖÐÏÂÂä¹ý³ÌÖÐÖØÁ¦×öµÄ¹¦µÈÓÚ¶¯ÄܵÄÔö¼ÓÁ¿ | |
| B£® | ¸ÃË鯬ÔÚ¿ÕÖÐÏÂÂä¹ý³ÌÖÐÖØÁ¦×öµÄ¹¦µÈÓÚ¿ÕÆø×èÁ¦µÄ¹¦ÂÊ | |
| C£® | ¸ÃË鯬ÔÚ½øÈëË®ÖеĹý³ÌÖÐÖØÁ¦×öµÄ¹¦µÈÓÚ¶¯ÄܵĸıäÁ¿ | |
| D£® | ¸ÃË鯬ÔÚÕû¸ö¹ý³ÌÖлúеÄܵÄÔöÁ¿µÈÓÚ³ýÖØÁ¦ÍâÆäËûÁ¦×ö¹¦µÄ´úÊýºÍ |