ÌâÄ¿ÄÚÈÝ
7£®£¨1£©bÁ£×Ó¾¹ýCµãʱµÄËÙ¶È£¿
£¨2£©ÔÈÇ¿µç³¡µÄµç³¡Ç¿¶ÈEµÄ´óСºÍÔÈÇ¿´Å³¡µÄ´Å¸ÐӦǿ¶ÈBµÄ´óС£¿
£¨3£©Èôʹa¡¢bÁ½Á£×Óͬʱµ½´ïCµã£¬ÔòÁ½Á£×Ó´ÓAµãÏȺóÉä³öʱµÄʱ¼ä²îÊǶàÉÙ£¿
·ÖÎö £¨1£©bÁ£×Ó´ÓAµ½C×öÀàÆ½Å×Ô˶¯£¬Ó¦ÓÃÀàÆ½Å×Ô˶¯µÄ¹æÂÉ¿ÉÒÔÇó³öÁ£×Óµ½´ïCµãµÄËÙ¶È£®
£¨2£©Á£×ÓbÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬Ó¦ÓÃÀàÆ½Å×Ô˶¯¹æÂÉ¿ÉÒÔÇó³öµç³¡Ç¿¶È£¬×÷³öÁ£×ÓaµÄÔ˶¯¹ì¼££¬Ó¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÒÔÇó³ö´Å¸ÐӦǿ¶È£®
£¨3£©·Ö±ðÇó³öÁ£×Óa¡¢bµÄÔ˶¯Ê±¼ä£¬È»ºóÇó³öʱ¼ä²î£®
½â´ð ½â£º£¨1£©bÁ£×ÓÔڵ糡ÖдÓAµ½Cµã£¬×öÀàÆ½Å×Ô˶¯£º
2L=$\sqrt{2}$v0tb ¢ÙL=$\frac{{v}_{by}}{2}$tb ¢Ú
¾¹ýCµãʱµÄËÙ¶È´óС£ºvbc=$\sqrt{£¨\sqrt{2}{v}_{0}£©^{2}+{v}_{by}^{2}}$£¬½âµÃ£ºvbc=2v0 ¢Û
·½ÏòÓëˮƽ³É¦È£¬tan¦È=$\frac{{v}_{by}}{{v}_{0}}$=1£¬¦È=45¡ã ¢Ü
£¨2£©bÁ£×ÓÔڵ糡ÖдÓAµ½Cµã×öÀàÆ½Å×Ô˶¯£º
qE=ma ¢ÝL=$\frac{1}{2}$atb2 ¢Þ
¢Ù¢Ý¢ÞÁª½âµÃ£ºE=$\frac{m{v}_{0}^{2}}{qL}$ ¢ß
¶ÔaÁ£×Ó£¬Ôڵ糡ÖУ¬Í¬Àí·ÖÎö£¬Ó¦´òÔÚACµÄÖеãD£¬
¹ýDµãʱµÄËÙ¶È´óСΪ£ºvaD=$\sqrt{2}$v0£¬·½ÏòÈÔÓëˮƽ³É45¡ã ¢à
aÁ£×Ó¹ýDºó½øÈë´Å³¡Ç°×öÔÈËÙÖ±ÏßÔ˶¯£¬´ÓFµã½øÈë´Å³¡ºó×öÔÈËÙÔ²ÖÜÔ˶¯£¬¹ì¼£ÈçͼËùʾ£¨Ô²ÐĽÇΪ90¡ã£©£®![]()
ÉèÔ²°ë¾¶ÎªRa£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºqvaDB=m$\frac{{v}_{aD}^{2}}{{R}_{a}}$ ¢á
Óɼ¸ºÎ¹ØÏµ£ºRa=$\frac{\sqrt{2}}{4}$L ¢â½âµÃ£ºB=$\frac{4m{v}_{0}}{qL}$ £¨11£©£»
£¨3£©ÓÉ¢Ù½âµÃ£ºtb=$\frac{\sqrt{2}L}{{v}_{0}}$£¬
aÁ£×Ó´ÓAµ½F£¬Ë®Æ½·½ÏòÔÈËÙ£¬ÓÃʱ£ºta1=$\frac{3L}{2{v}_{0}}$ £¨12£©
Ôڴų¡ÖÐÓÃʱ£ºta2=$\frac{T}{4}$=$\frac{2¦Ð{R}_{a}}{4{v}_{aD}}$=$\frac{¦ÐL}{8{v}_{0}}$ £¨13£©
ʱ¼ä²î£º¡÷t=ta1+ta2-tb=$\frac{£¨12+¦Ð-8\sqrt{2}£©L}{8{v}_{0}}$£»
´ð£º£¨1£©bÁ£×Ó¾¹ýCµãʱµÄËÙ¶È´óСΪ2v0£¬·½ÏòÓëˮƽ³É45¡ã½Ç£®
£¨2£©ÔÈÇ¿µç³¡µÄµç³¡Ç¿¶ÈEµÄ´óСΪ$\frac{m{v}_{0}^{2}}{qL}$£¬ÔÈÇ¿´Å³¡µÄ´Å¸ÐӦǿ¶ÈBµÄ´óСΪ£º$\frac{4m{v}_{0}}{qL}$£»
£¨3£©Èôʹa¡¢bÁ½Á£×Óͬʱµ½´ïCµã£¬ÔòÁ½Á£×Ó´ÓAµãÏȺóÉä³öʱµÄʱ¼ä²îÊÇ$\frac{£¨12+¦Ð-8\sqrt{2}£©L}{8{v}_{0}}$£®
µãÆÀ ´øµçÁ£×ÓÔÚ¸´ºÏ³¡ÖеÄÔ˶¯ÊÇÕû¸ö¸ßÖеÄÖØµã£¬Ò²ÊǸ߿¼µÄ±Ø¿¼µÄÄÚÈÝ£¬Á£×ÓµÄÔ˶¯¹ý³ÌµÄÊÜÁ¦·ÖÎöÒÔ¼°Ô˶¯Çé¿ö·ÖÎöÊǽâÌâµÄ¹Ø¼ü£»ÕÆÎÕÆ½Å×Ô˶¯µÄ´¦Àí·½·¨²¢ÄÜÔËÓõ½ÀàÆ½Å×Ô˶¯ÖУ¬Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÄÜÕýÈ·µÄ»³öÔ˶¯¹ì¼££¬²¢¸ù¾Ý¼¸ºÎ¹ØÏµÈ·¶¨¸÷Á¿Ö®¼äµÄ¹ØÏµ£®
| A£®»¬¶¯±ä×èÆ÷R1£¨0¡«5¦¸£¬1A£© | D£®¶¨Öµµç×èR01£¨×èֵΪ200¦¸£© |
| B£®»¬¶¯±ä×èÆ÷R2£¨0¡«200¦¸£¬0.5A£© | E£®¶¨Öµµç×èR02£¨×èֵΪ25¦¸£© |
| C£®»¬¶¯±ä×èÆ÷R3£¨0¡«1750¦¸£¬0.1A£© | F£®¶¨Öµµç×èR03£¨×èֵΪ5¦¸£© |
£¨2£©Á¬½ÓºÃµç·֮ºó£¬ÊµÑéС×é½øÐÐÁËÒÔϲÙ×÷£º
µÚÒ»£¬ÏȽ«»¬¶¯±ä×èÆ÷µÄ»¬Æ¬ÒƵ½×îÓÒ¶Ë£¬µ÷½Úµç×èÏäµÄ×èֵΪÁ㣻
µÚ¶þ£¬±ÕºÏ¿ª¹ØS£¬½«»¬Æ¬»ºÂý×óÒÆ£¬Ê¹ÁéÃôµçÁ÷±íÂúÆ«£»
µÚÈý£¬±£³Ö»¬Æ¬²»¶¯£¨¿ÉÈÏΪa£¬b¼äµçѹ²»±ä£©£¬µ÷½Úµç×èÏäR¡äµÄ×èֵʹÁéÃôµçÁ÷±íµÄʾÊýÇ¡ºÃΪÂú¿Ì¶ÈµÄ$\frac{1}{2}$£®
Èô´Ëʱµç×èÏäµÄʾÊýÈçͼ±ûËùʾ£¬ÔòÁéÃôµçÁ÷±íÄÚ×èµÄ²âÁ¿ÖµRgΪ102.5¦¸£®
£¨3£©Îª½ÏºÃµØÍê³ÉʵÑ飬¾¡Á¿¼õСʵÑéÎó²î£¬ÊµÑéÖÐӦѡÔñµÄ»¬¶¯±ä×èÆ÷ºÍ¶¨Öµµç×è·Ö±ðΪAºÍE£¨Ìî±í¸ñÖÐÆ÷²ÄǰµÄ×Öĸ£©£®
£¨4£©ÒªÁÙʱ°Ñ¸ÃÁéÃôµçÁ÷±í¸Ä×°³É3.0VÁ¿³ÌµÄµçѹ±íʹÓã¬ÔòÓ¦½«ÆäÓëµç×èÏä´®Áª£¨Ìî¡°´®Áª¡±»ò¡°²¢Áª¡±£©£¬²¢°Ñµç×èÏäµÄµç×èÖµµ÷Ϊ897.5¦¸£®
| A£® | ÔÚÔ²»·Ï»¬µÄ¹ý³ÌÖУ¬Ô²»·¡¢µ¯»ÉºÍµØÇò×é³ÉµÄϵͳ»úеÄÜÊØºã | |
| B£® | ÔÚÔ²»·Ï»¬µÄ¹ý³ÌÖУ¬µ±µ¯»É×î¶Ìʱµ¯»ÉµÄµ¯ÐÔÊÆÄÜ×î´ó | |
| C£® | ÔÚÔ²»·Ï»¬µÄ¹ý³ÌÖУ¬µ±µ¯»ÉÔٴλָ´Ô³¤Ê±Ô²»·µÄ¶¯ÄÜ×î´ó | |
| D£® | ÔÚÔ²»·Ï»¬µ½¸ËµÄµ×¶Ëʱ£¬µ¯»ÉµÄµ¯ÐÔÊÆÄÜΪmgh |
| A£® | ´Ë²¨ÑØxÖḺ·½Ïò´«²¥ | |
| B£® | ´Ë²¨µÄ´«²¥ËÙ¶ÈΪ125m/s | |
| C£® | ´Ót=0ʱÆð£¬¾¹ý0.04 s£¬ÖʵãAÑØ²¨´«²¥·½ÏòÇ¨ÒÆÁË5m | |
| D£® | ÔÚt=0.04 sʱ£¬ÖʵãB´¦ÔÚÆ½ºâλÖã¬ËÙ¶ÈÑØyÖḺ·½Ïò | |
| E£® | ÄÜÓë¸Ã²¨·¢Éú¸ÉÉæµÄºá²¨µÄƵÂÊÒ»¶¨Îª62.5Hz |
| A£® | ¹âµÄ¸ÉÉæËµÃ÷¹âÊǺᲨ | |
| B£® | ×ÔÈ»¹âÔÚË®Ãæ·´Éäʱ£¬·´Éä¹âºÍÕÛÉä¹â¶¼ÊÇÒ»¶¨³Ì¶ÈµÄÆ«Õñ¹â | |
| C£® | ÔÚÕæ¿ÕÖеç´Å²¨µÄƵÂÊÔ½¸ß£¬´«²¥ËÙ¶ÈԽС | |
| D£® | ÔÚ²»Í¬¹ßÐÔϵÖУ¬¹âÔÚÕæ¿ÕÖÐÑØ²»Í¬·½ÏòµÄ´«²¥ËٶȲ»Í¬ |