ÌâÄ¿ÄÚÈÝ
11£®ÔÚÎïÀíѧ·¢Õ¹¹ý³ÌÖУ¬¹Û²â¡¢ÊµÑé¡¢¼Ù˵ºÍÂß¼ÍÆÀíµÈ·½·¨¶¼Æðµ½ÁËÖØÒª×÷Óã®ÏÂÁÐÐðÊö²»·ûºÏʷʵµÄÊÇ£¨¡¡¡¡£©| A£® | °ÂË¹ÌØÔÚʵÑéÖй۲쵽µçÁ÷µÄ´ÅЧӦ£¬¸ÃЧӦ½ÒʾÁ˵çºÍ´ÅÖ®¼ä´æÔÚÁªÏµ | |
| B£® | °²Åà¸ù¾ÝͨµçÂÝÏ߹ܵĴų¡ºÍÌõÐδÅÌúµÄ´Å³¡µÄÏàËÆÐÔ£¬Ìá³öÁË·Ö×ÓµçÁ÷¼Ù˵ | |
| C£® | ·¨ÀµÚÔÚʵÑéÖй۲쵽£¬ÔÚͨÓк㶨µçÁ÷µÄ¾²Ö¹µ¼Ï߸½½üµÄ¹Ì¶¨µ¼ÏßȦÖУ¬²»»á³öÏÖ¸ÐÓ¦µçÁ÷ | |
| D£® | ·¨ÀµÚÔÚ·ÖÎöÁËÐí¶àʵÑéÊÂʵºóÌá³ö£¬¸ÐÓ¦µçÁ÷Ó¦¾ßÓÐÕâÑùµÄ·½Ïò£¬¼´¸ÐÓ¦µçÁ÷µÄ´Å³¡×ÜÒª×è°ÒýÆð¸ÐÓ¦µçÁ÷µÄ´ÅͨÁ¿µÄ±ä»¯ |
·ÖÎö ¶ÔÓÚÎïÀíÖеÄÖØ´ó·¢ÏÖ¡¢ÖØÒª¹æÂÉ¡¢ÔÀí£¬ÒªÕÆÎÕÆä·¢ÏÖÕߺÍÌá³öÕߣ¬Á˽âËùÉæ¼°Î°´ó¿ÆÑ§¼ÒµÄÖØÒª³É¾Í£®
½â´ð ½â£ºA¡¢°ÂË¹ÌØÔÚʵÑéÖй۲쵽µçÁ÷µÄ´ÅЧӦ£¬¸ÃЧӦ½ÒʾÁ˵çºÍ´ÅÖ®¼ä´æÔÚÁªÏµ£¬¹ÊAÕýÈ·£»
B¡¢°²Åà¸ù¾ÝͨµçÂÝÏ߹ܵĴų¡ºÍÌõÐδÅÌúµÄ´Å³¡µÄÏàËÆÐÔ£¬Ìá³öÁË·Ö×ÓµçÁ÷¼Ù˵£¬ºÜºÃµØ½âÊÍÁË´Å»¯ÏÖÏó£®¹ÊBÕýÈ·£»
C¡¢·¨ÀµÚÔÚʵÑéÖй۲쵽£¬ÔÚͨÓк㶨µçÁ÷µÄ¾²Ö¹µ¼Ï߸½½üµÄ¹Ì¶¨µ¼ÏßȦÖУ¬´ÅͨÁ¿²»±ä£¬²»»á³öÏÖ¸ÐÓ¦µçÁ÷£®¹ÊCÕýÈ·£®
D¡¢Àã´ÎÔÚ·ÖÎöÁËÐí¶àʵÑéÊÂʵºóÌá³öÀã´Î¶¨ÂÉ£¬¼´¸ÐÓ¦µçÁ÷Ó¦¾ßÓÐÕâÑùµÄ·½Ïò£¬¸ÐÓ¦µçÁ÷µÄ´Å³¡×ÜÒª×è°ÒýÆð¸ÐÓ¦µçÁ÷µÄ´ÅͨÁ¿µÄ±ä»¯£®¹ÊD´íÎó£®
±¾ÌâÑ¡Ôñ²»·ûºÏʷʵµÄ£¬¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éÎïÀíѧʷ£¬Êdz£Ê¶ÐÔÎÊÌ⣬¶ÔÓÚÎïÀíѧÉÏÖØ´ó·¢ÏÖ¡¢·¢Ã÷¡¢ÖøÃûÀíÂÛÒª¼ÓÇ¿¼ÇÒ䣬ÕâÒ²ÊÇ¿¼ÊÔÄÚÈÝÖ®Ò»£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
6£®¡°ÒÔÂÑ»÷ʯ£¬ÂÑËéʯȫ¡±ÏÂÁйØÓÚÂÑ¡¢Ê¯Ö®¼ä×÷ÓÃÁ¦µÄ±íÊöÖв»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ¼¦µ°ÊÇÔ˶¯µÄ£¬Ê¯Í·ÊǾ²Ö¹µÄ£¬ËùÒÔ¼¦µ°¶ÔʯͷµÄ×÷ÓÃÁ¦´óÓÚʯͷ¶Ô¼¦µ°µÄ×÷ÓÃÁ¦ | |
| B£® | ¼¦µ°ËéÁË£¬¶øÊ¯Í·Ã»ÓÐË飬ËùÒÔ¼¦µ°¶ÔʯͷµÄ×÷ÓÃÁ¦Ð¡ÓÚʯͷ¶Ô¼¦µ°µÄ×÷ÓÃÁ¦ | |
| C£® | ¼¦µ°¶ÔʯͷµÄ×÷ÓÃÁ¦Óëʯͷ¶Ô¼¦µ°µÄ×÷ÓÃÁ¦´óСÏàµÈ | |
| D£® | ¼¦µ°¶ÔʯͷµÄ×÷ÓÃÁ¦Óëʯͷ¶Ô¼¦µ°µÄ×÷ÓÃÁ¦Æ½ºâ |
16£®
ÈçͼËùʾ£¬Çã½ÇΪ¦ÈµÄÐ±ÃæÌåCÖÃÓÚË®Æ½ÃæÉÏ£¬BÖÃÓÚÐ±ÃæÉÏ£¬Í¨¹ýϸÉþ¿ç¹ý¹â»¬µÄ¶¨»¬ÂÖÓëAÏàÁ¬½Ó£¬Á¬½ÓBµÄÒ»¶ÎϸÉþÓëÐ±ÃæÆ½ÐУ¬A¡¢B¡¢C¶¼´¦ÓÚ¾²Ö¹×´Ì¬£¬Ôò£¨¡¡¡¡£©
| A£® | CÊܵ½Ë®Æ½ÃæµÄĦ²ÁÁ¦Ò»¶¨ÎªÁã | |
| B£® | BÊܵ½CµÄĦ²ÁÁ¦¿ÉÄÜΪÁã | |
| C£® | ²»ÂÛB¡¢C¼äĦ²ÁÁ¦´óС¡¢·½ÏòÈçºÎ£¬Ë®Æ½Ãæ¶ÔCµÄĦ²ÁÁ¦·½ÏòÒ»¶¨Ïò×ó | |
| D£® | Ë®Æ½Ãæ¶ÔCµÄÖ§³ÖÁ¦ÓëB¡¢CµÄ×ÜÖØÁ¦´óСÏàµÈ |
20£®ÒÑÖªºÓË®µÄÁ÷ËÙΪv1£¬Ð¡´¬ÔÚ¾²Ë®ÖеÄËÙ¶ÈΪv2£¬ÇÒv2£¾v1£¬ÓÃС¼ýÍ·±íʾС´¬£¬¼ýÍ·Ö¸Ïò±íʾ´¬Í·µÄÖ¸Ïò£¬ÔòÄÜÕýÈ··´Ó³Ð¡´¬ÒÔ×î¶Ìʱ¼ä¶ÉºÓ£®ÒÔ×î¶ÌÎ»ÒÆ¶ÉºÓµÄÇ龰ͼʾÒÀ´ÎÊÇ£¨¡¡¡¡£©

| A£® | ¢Ù¢Ú | B£® | ¢Ü¢Ý | C£® | ¢Ù¢Ý | D£® | ¢Ú¢Û |
1£®
ijÑо¿ÐÔѧϰС×éÉè¼ÆÁËÈçͼµÄ×°ÖÃÓÃÀ´ÔÚÔÂÇòÉÏ¡°³ÆÁ¿¡°ÎïÌåµÄÖÊÁ¿£®Ò»ÇáÖʵ¯»É×ó¶Ë¹Ì¶¨ÔÚÊúֱǽ±ÚÉÏ£¬ÖÊÁ¿Îªm0µÄ°¼²Û½ô¿¿µ¯»ÉÓÒ¶Ë£¨²»Á¬½Ó£©½«ÆäѹËõÔÚO λÖã¬Êͷź󰼲Û×ó¶ËÇ¡ÄÜÔ˶¯µ½A µã£®ÔÚ°¼²Û·ÅÈë±»²âÎïÌ壬ÔÙ½«µ¯»ÉѹËõµ½O λÖã¬Êͷź󰼲ÛÀ뿪µ¯»É£¬×ó¶ËÇ¡ÄÜÔ˶¯µ½B µã£¬²âµÃOA¡¢OB ³¤·Ö±ðΪx1ºÍx2£®Ôò±»²âÎïÌåµÄÖÊÁ¿Îª£¨¡¡¡¡£©
| A£® | $\frac{{x}_{1}-{x}_{2}}{{x}_{2}}$m0 | B£® | $\frac{{x}_{1}+{x}_{2}}{{x}_{2}}$m0 | C£® | $\frac{{x}_{1}}{{x}_{2}}$m0 | D£® | $\frac{{x}_{2}}{{x}_{1}}$m0 |