ÌâÄ¿ÄÚÈÝ

8£®ÈçͼËùʾ£¬ÔÚxOyÆ½ÃæÓÐÒ»°ë¾¶ÎªRµÄÔ²ÐÎÇøÓò£¬×ø±êÔ­µãOΪԲÐÎÇøÓòÓëxÖáµÄÏàÇе㣬ԲÐÎÇøÓòÄÚÓÐÏ໥´¹Ö±µÄÔÈÇ¿µç³¡ºÍÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶ÈΪB£¬´Å³¡·½Ïò´¹Ö±ÓÚxOyÆ½ÃæÏòÀһ´øÕýµçµÄÁ£×Ó£¨²»¼ÆÖØÁ¦£©´ÓOµãÑØyÖáÕý·½ÏòÒÔijһËÙ¶ÈÉäÈ룬´øµçÁ£×ÓÇ¡ºÃ×öÔÈËÙÖ±ÏßÔ˶¯£¬¾­t0ʱ¼ä´ÓyÖáÉϵÄMµãÉä³ö£®
£¨1£©Çó´øµçÁ£×ÓµÄËٶȺ͵糡ǿ¶ÈµÄ´óС¼°·½Ïò£®
£¨2£©Èô½ö³·È¥´Å³¡£¬´øµçÁ£×ÓÈÔ´ÓOµãÒÔÏàͬµÄËÙ¶ÈÉäÈ룬¾­$\frac{3}{4}$t0ʱ¼äÇ¡´ÓÔ²ÐÎÇøÓòµÄ±ß½çÉä³ö£¬ÇóÁ£×ÓÔ˶¯¼ÓËٶȵĴóСaºÍ±ÈºÉq/m£®
£¨3£©Èô½ö³·È¥µç³¡£¬´øµçÁ£×ÓÈÔ´ÓOµãÒÔÏàͬµÄËÙ¶ÈÉäÈ룬ÇóÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄ¹ì¼£°ë¾¶£®

·ÖÎö £¨1£©ÓÉ×óÊÖ¶¨ÔòÅжϳöÁ£×ÓËùÊÜÂåÂ××ÈÁ¦·½Ïò£¬Á£×Ó×öÔÈËÙÖ±ÏßÔ˶¯£¬È»ºóÓ¦ÓÃÆ½ºâÌõ¼þÇó³öµç³¡Ç¿¶È´óСÓëµç³¡Ç¿¶È·½Ïò£®
£¨2£©½öÓе糡ʱ£¬´øµçÁ£×ÓÔÚÔÈÇ¿µç³¡ÖÐ×÷ÀàÆ½Å×Ô˶¯£¬¸ù¾ÝÀàÆ½Å×Ô˶¯µÄ¹æÂÉ¿ÉÒÔÇóµÃÁ£×ÓÔ˶¯¼ÓËÙ¶È´óСºÍ±ÈºÉ£®
£¨3£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬Ó¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÒÔÇó³öÖÊÁ¿ÓëµçºÉÖ®±È£¬Çó³öÁ£×ÓµÄÔ˶¯Ê±¼ä£®

½â´ð ½â£º£¨1£©Éè´øµçÁ£×ÓµÄÖÊÁ¿Îªm£¬µçºÉÁ¿Îªq£¬³õËÙ¶ÈΪv£¬µç³¡Ç¿¶ÈΪE£®¿ÉÅжϳöÁ£×ÓÊܵ½µÄÂåÂ×´ÅÁ¦ÑØxÖḺ·½Ïò£¬ÓÚÊÇ¿ÉÖªµç³¡Ç¿¶ÈÑØxÖáÕý·½Ïò
ÇÒÓР   qE=qvB                       ¢Ù
ÓÖ     2R=vt0                         ¢Ú
Ôò     E=$\frac{2BR}{{t}_{0}}$?¢Û
£¨2£©½öÓе糡ʱ£¬´øµçÁ£×ÓÔÚÔÈÇ¿µç³¡ÖÐ×÷ÀàÆ½Å×Ô˶¯
ÔÚy·½ÏòÔÈËÙÔ˶¯£¬Î»ÒÆÎª     $y=v\frac{3}{4}{t}_{0}$¢Ü
ÓÉ¢Ú¢ÜʽµÃ   y=$\frac{3}{2}R$                       ¢Ý
ÉèÔÚˮƽ·½ÏòÎ»ÒÆÎªx£¬ÒòÉä³öλÖÃÔÚ°ëÔ²ÐÎÇøÓò±ß½çÉÏ£¬Èçͼ£º

ÓÚÊÇ£º
   x=$\frac{\sqrt{3}}{2}R$                    
ÓÖÓР        x=$\frac{1}{2}a{t}^{2}$=$\frac{1}{2}a£¨\frac{3}{4}{t}_{0}£©^{2}$                 ¢Þ
µÃ       a=$\frac{16\sqrt{3}R}{9{t}_{0}^{2}}$                      ¢ß
ÓÖÒòΪ£ºa=$\frac{Eq}{m}$  ¢à£¬ÁªÁ¢¢Û¢ß¢à£¬½âµÃ£º$\frac{q}{m}$=$\frac{8\sqrt{3}}{9B{t}_{0}}$£¬
£¨3£©Èô½ö³·È¥µç³¡£¬´øµçÁ£×ÓÈÔ´ÓMµãÉäÈ룬Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬Á£×ÓÔ˶¯¹ì¼£µÄ°ë¾¶r£º
Á£×Ó×öÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº$Bqv=m\frac{{v}^{2}}{r}$
½âµÃ£º$r=\frac{mv}{Bq}$=$\frac{9B{t}_{0}}{8\sqrt{3}}¡Á\frac{2R}{B{t}_{0}}$=$\frac{9R}{4\sqrt{3}}$£®
´ð£º£¨1£©Çó´øµçÁ£×ÓµÄËٶȺ͵糡ǿ¶ÈµÄ´óСΪ$\frac{2BR}{{t}_{0}}$?·½ÏòÑØxÖáÕý·½Ïò£®
£¨2£©Á£×ÓÔ˶¯¼ÓËٶȵĴóСaΪ$\frac{16\sqrt{3}R}{9{t}_{0}^{2}}$£¬±ÈºÉq/mΪ$\frac{8\sqrt{3}}{9B{t}_{0}}$£®
£¨3£©Á£×ÓÔڴų¡ÖÐÔ˶¯µÄ¹ì¼£°ë¾¶$\frac{9R}{4\sqrt{3}}$£®

µãÆÀ ±¾Ì⿼²é´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖеÄÔ˶¯£¬ÒªÕÆÎÕס°ë¾¶¹«Ê½¡¢ÖÜÆÚ¹«Ê½£¬»­³öÁ£×ÓµÄÔ˶¯¹ì¼£ºó£¬¼¸ºÎ¹ØÏµ¾Í±È½ÏÃ÷ÏÔÁË£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
3£®ÈçͼËùʾµÄʵÑé×°ÖÿÉÒÔÓÃÀ´ÑéÖ¤Á¦µÄƽÐÐËıßÐζ¨Ôò£¬´øÓл¬Âֵķ½Ä¾°åÊúÖ±·ÅÖã¬ÎªÁ˱ãÓÚµ÷½ÚÉþ×ÓÀ­Á¦µÄ·½Ïò£¬»¬ÂÖ¿ÉÒÔ°²·ÅÔÚľ°åÉϵĶà¸öλ
£¨1£©Çë°ÑÏÂÃæµÄʵÑé²½Öè²¹³äÍêÕû
¢ÙÈý¶ÎÉþ×Ó¸÷×ÔÐü¹ÒÒ»¶¨ÊýÄ¿µÄµÈÖÊÁ¿¹³Â룬µ÷Õû»¬ÂÖÔÚľ°åÉϵÄλÖã¬Ê¹µÃϵͳ¾²Ö¹²»¶¯
¢Ú°ÑÒ»ÕÅ»­Óеȼä¾àͬÐÄÔ²µÄºñÖ½½ôÌùľ°å·ÅÖÃÔÚÉþ×ÓÓëľ°åÖ®¼ä£¬Ê¹µÃÔ²ÐÄλÓÚÉþ×Ó½áµãO´¦£¬Óõȼä¾àͬÐÄÔ²×÷Ϊ»­Í¼ÖúÊÖ£¬ÒÔ·½±ã×ö³öÁ¦µÄͼ±ê£¬ÄãÈÏΪ±¾ÊµÑéÓбØÒª²âÁ¿¹³ÂëÖØÁ¦Â𣿴ðûÓУ¨Ìî¡°ÓС±»ò¡°Ã»ÓС±£¬²»±ØËµÃ÷ÀíÓÉ£©
¢Û¼Ç¼Èý¶ÎÉþ×ÓÐü¹Ò¹³ÂëµÄ¸öÊýÒÔ¼°Èý¶ÎÉþ×ӵķ½Ïò
¢ÜÈý¶ÎÉþ×ÓÉϵÄÀ­Á¦FA£¬FB£¬FC¿ÉÓù³ÂëÊýÁ¿À´±íʾ£¬¸ù¾Ý¼Ç¼µÄÊý¾Ý×÷³öÁ¦FA£¬FB£¬FC
¢ÝÒÔFA£¬FBΪÁڱߣ¬»­³öƽÐÐËıßÐΣ¬Èç¹ûFA¡¢FBËù¼ÐµÄ¶Ô½ÇÏßÓëFC£¬½üËÆ¹²Ïߵȳ¤£¬ÔòÔÚʵÑéÎó²îÔÊÐí·¶Î§ÄÚÑéÖ¤ÁËÁ¦µÄƽÐÐËıßÐζ¨Ôò£®
£¨2£©ÈçͼËùʾ£¬Èý¶ÎÉþ×ÓÉÏ·Ö±ðÐü¹ÒÁË3¡¢4¡¢5¸ö¹³Âë¶ø¾²Ö¹²»¶¯£¬ÈôͼÖÐOA£¬OBÁ½¶ËÉþ×ÓÓëÊúÖ±·½ÏòµÄ¼Ð½Ç·Ö±ðΪ¦Á¡¢¦Â£¬ÄÇô$\frac{sin¦Á}{sin¦Â}$=0.75£®

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø