ÌâÄ¿ÄÚÈÝ
8£®£¨1£©Çó´øµçÁ£×ÓµÄËٶȺ͵糡ǿ¶ÈµÄ´óС¼°·½Ïò£®
£¨2£©Èô½ö³·È¥´Å³¡£¬´øµçÁ£×ÓÈÔ´ÓOµãÒÔÏàͬµÄËÙ¶ÈÉäÈ룬¾$\frac{3}{4}$t0ʱ¼äÇ¡´ÓÔ²ÐÎÇøÓòµÄ±ß½çÉä³ö£¬ÇóÁ£×ÓÔ˶¯¼ÓËٶȵĴóСaºÍ±ÈºÉq/m£®
£¨3£©Èô½ö³·È¥µç³¡£¬´øµçÁ£×ÓÈÔ´ÓOµãÒÔÏàͬµÄËÙ¶ÈÉäÈ룬ÇóÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄ¹ì¼£°ë¾¶£®
·ÖÎö £¨1£©ÓÉ×óÊÖ¶¨ÔòÅжϳöÁ£×ÓËùÊÜÂåÂ××ÈÁ¦·½Ïò£¬Á£×Ó×öÔÈËÙÖ±ÏßÔ˶¯£¬È»ºóÓ¦ÓÃÆ½ºâÌõ¼þÇó³öµç³¡Ç¿¶È´óСÓëµç³¡Ç¿¶È·½Ïò£®
£¨2£©½öÓе糡ʱ£¬´øµçÁ£×ÓÔÚÔÈÇ¿µç³¡ÖÐ×÷ÀàÆ½Å×Ô˶¯£¬¸ù¾ÝÀàÆ½Å×Ô˶¯µÄ¹æÂÉ¿ÉÒÔÇóµÃÁ£×ÓÔ˶¯¼ÓËÙ¶È´óСºÍ±ÈºÉ£®
£¨3£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬Ó¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÒÔÇó³öÖÊÁ¿ÓëµçºÉÖ®±È£¬Çó³öÁ£×ÓµÄÔ˶¯Ê±¼ä£®
½â´ð ½â£º£¨1£©Éè´øµçÁ£×ÓµÄÖÊÁ¿Îªm£¬µçºÉÁ¿Îªq£¬³õËÙ¶ÈΪv£¬µç³¡Ç¿¶ÈΪE£®¿ÉÅжϳöÁ£×ÓÊܵ½µÄÂåÂ×´ÅÁ¦ÑØxÖḺ·½Ïò£¬ÓÚÊÇ¿ÉÖªµç³¡Ç¿¶ÈÑØxÖáÕý·½Ïò
ÇÒÓÐ qE=qvB ¢Ù
ÓÖ 2R=vt0 ¢Ú
Ôò E=$\frac{2BR}{{t}_{0}}$?¢Û
£¨2£©½öÓе糡ʱ£¬´øµçÁ£×ÓÔÚÔÈÇ¿µç³¡ÖÐ×÷ÀàÆ½Å×Ô˶¯
ÔÚy·½ÏòÔÈËÙÔ˶¯£¬Î»ÒÆÎª $y=v\frac{3}{4}{t}_{0}$¢Ü
ÓÉ¢Ú¢ÜʽµÃ y=$\frac{3}{2}R$ ¢Ý
ÉèÔÚˮƽ·½ÏòÎ»ÒÆÎªx£¬ÒòÉä³öλÖÃÔÚ°ëÔ²ÐÎÇøÓò±ß½çÉÏ£¬Èçͼ£º![]()
ÓÚÊÇ£º
x=$\frac{\sqrt{3}}{2}R$
ÓÖÓÐ x=$\frac{1}{2}a{t}^{2}$=$\frac{1}{2}a£¨\frac{3}{4}{t}_{0}£©^{2}$ ¢Þ
µÃ a=$\frac{16\sqrt{3}R}{9{t}_{0}^{2}}$ ¢ß
ÓÖÒòΪ£ºa=$\frac{Eq}{m}$ ¢à£¬ÁªÁ¢¢Û¢ß¢à£¬½âµÃ£º$\frac{q}{m}$=$\frac{8\sqrt{3}}{9B{t}_{0}}$£¬
£¨3£©Èô½ö³·È¥µç³¡£¬´øµçÁ£×ÓÈÔ´ÓMµãÉäÈ룬Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬Á£×ÓÔ˶¯¹ì¼£µÄ°ë¾¶r£º
Á£×Ó×öÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº$Bqv=m\frac{{v}^{2}}{r}$
½âµÃ£º$r=\frac{mv}{Bq}$=$\frac{9B{t}_{0}}{8\sqrt{3}}¡Á\frac{2R}{B{t}_{0}}$=$\frac{9R}{4\sqrt{3}}$£®
´ð£º£¨1£©Çó´øµçÁ£×ÓµÄËٶȺ͵糡ǿ¶ÈµÄ´óСΪ$\frac{2BR}{{t}_{0}}$?·½ÏòÑØxÖáÕý·½Ïò£®
£¨2£©Á£×ÓÔ˶¯¼ÓËٶȵĴóСaΪ$\frac{16\sqrt{3}R}{9{t}_{0}^{2}}$£¬±ÈºÉq/mΪ$\frac{8\sqrt{3}}{9B{t}_{0}}$£®
£¨3£©Á£×ÓÔڴų¡ÖÐÔ˶¯µÄ¹ì¼£°ë¾¶$\frac{9R}{4\sqrt{3}}$£®
µãÆÀ ±¾Ì⿼²é´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖеÄÔ˶¯£¬ÒªÕÆÎÕס°ë¾¶¹«Ê½¡¢ÖÜÆÚ¹«Ê½£¬»³öÁ£×ÓµÄÔ˶¯¹ì¼£ºó£¬¼¸ºÎ¹ØÏµ¾Í±È½ÏÃ÷ÏÔÁË£®
| A£® | µ½´ï¼¯³¾¼«µÄ³¾°£´ø¸ºµçºÉ | |
| B£® | µç³¡·½ÏòÓɷŵ缫ָÏò¼¯³¾¼« | |
| C£® | ´øµç³¾°£ËùÊܵ糡Á¦µÄ·½ÏòÓëµç³¡·½ÏòÏàͬ | |
| D£® | ͬһλÖôøµçºÉÁ¿Ô½¶àµÄ³¾°£ËùÊܵ糡Á¦Ô½´ó |