题目内容

2.物体做匀加速直线运动,加速度为a,物体通过A点时的速度为vA,经过时间t到达B点,速度为vB,再经过时间t到达C点速度为vC,则有(  )
A.vB=$\frac{{v}_{A}+{v}_{C}}{2}$B.vB=$\frac{AB+BC}{t}$C.a=$\frac{BC-AB}{{t}^{2}}$D.a=$\frac{{v}_{C}+{v}_{A}}{2t}$

分析 物体做匀加速直线运动,由于A到B与B到C的时间相等,根据推论可知,物体经过B点的速度等于AC间的平均速度.由推论:△x=at2求解加速度

解答 解:A、B物体做匀加速直线运动,根据推论得:物体经过B点的速度等于AC间的平均速度,即有vB=$\overline{{v}_{AC}}$=$\frac{{v}_{A}+{v}_{C}}{2}$=$\frac{AB+BC}{2t}$.故A正确,B错误.
C、根据推论△x=at2得,BC-AB=at2,则得:a=$\frac{BC-AB}{{t}^{2}}$.故C正确
D、加速度a=$\frac{{v}_{C}-{v}_{A}}{2t}$.故D错误.
故选:AC.

点评 对于匀变速直线运动,求平均速度有两个公式可用:$\overline{v}$=$\frac{x}{t}$=${v}_{\frac{t}{2}}$,本题运用推论进行求解比较简便,也可以根据匀变速直线运动的基本公式进行求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网