ÌâÄ¿ÄÚÈÝ
5£®£¨1£©ÒªÊ¹µç×Ó´ÓÆ½Ðаå¼ä·É³ö£¬Á½¼«°å¼äÉÏ×î¶àÄܼӶà´óƫתµçѹU2£¿
£¨2£©µç×ÓÀ뿪µç³¡Ê±×î´óµÄƫת½Ç¶È¦Õ¶à´ó£¿
£¨3£©µç×ÓÀ뿪ƫתµç³¡Ê±µÄÆ«ÒÆÁ¿Îªy£¬Ã¿µ¥Î»Æ«×ªµçѹU2ÒýÆðµÄÆ«ÒÆÁ¿£¨$\frac{y}{{U}_{2}}$£©½Ð×öʾ²¨¹ÜµÄÁéÃô¶È£®ÎªÁËÌá¸ßÁéÃô¶È¿É²ÉÓõİ취£¿£¨¼´ÈçºÎ¸Ä±äU1¡¢U2¡¢d¡¢L£¿£©
·ÖÎö £¨1£©Á£×ÓÏȼÓËÙÔÙÆ«×ª£¬ÓÉÌâÒâ¿ÉÖªµ±µç×ÓÇ¡ºÃ·É³öʱ£¬Ëù¼Óµç³¡×î´ó£¬ÓÉÔ˶¯µÄºÏ³ÉÓë·Ö½â¹ØÏµ¿ÉµÃ³öµçѹֵ£®
£¨2£©Çó³öƫת½ÇµÄÕýÇÐÖµ£¬´Ó¶øÇó³ö×î´óµÄƫת½Ç¶È¦Õ£»
£¨3£©ÏÈÇó³ö$\frac{y}{{U}_{2}}$µÄ±í´ïʽ£¬¿´¿´±í´ïʽÓëÄÄЩÒòËØÓйأ¬´Ó¶øÇó½âÌá¸ßÁéÃô¶È¿É²ÉÓõİ취£®
½â´ð ½â£º£¨1£©ÔÚ¼ÓËٵ糡ÖУ¬¸ù¾Ý¶¯Äܶ¨ÀíµÃ£º$e{U}_{1}=\frac{1}{2}m{{v}_{0}}^{2}$ £¨1£©
ÔÚÆ«×ªµç³¡ÖУºÆ«×ªÁ¿y=$\frac{1}{2}a{t}^{2}$ £¨2£©
¼ÓËÙ¶È$a=\frac{e{U}_{2}}{md}$ £¨3£©
Ô˶¯Ê±¼ä$t=\frac{L}{{v}_{0}}$ £¨4£©
ÓÉ£¨1£©£¨2£©£¨3£©£¨4£©µÃ£ºy=$\frac{{U}_{2}{L}^{2}}{4{U}_{1}d}$ £¨5£©
µ±$y=\frac{d}{2}$ʱ£¬Ëù¼Óƫתµçѹ×î´ó£¬¼´ $\frac{d}{2}=\frac{{U}_{2}{L}^{2}}{4{U}_{1}d}$
ËùÒÔ ${U}_{2max}=\frac{2{d}^{2}}{{L}^{2}}{U}_{1}=\frac{2¡Á{1}^{2}}{{4}^{2}}¡Á5000=625V$
£¨2£©Æ«×ª½Ç¶ÈµÄÕýÇÐÖµ$tan¦Õ=\frac{{v}_{y}}{{v}_{0}}=\frac{at}{{v}_{0}}=\frac{e{U}_{2}L}{m{{v}_{0}}^{2}d}$=$\frac{{U}_{2}L}{2{U}_{1}d}=\frac{625¡Á4}{2¡Á5000¡Á1}=\frac{1}{4}$
ËùÒÔ¦Õ=arctan0.25
£¨3£©ÓÉ£¨5£©µÃ£º$\frac{y}{{U}_{2}}=\frac{{L}^{2}}{4{U}_{1}d}$
ËùÒÔΪÁËÌá¸ßÁéÃô¶È¿É²ÉÓÃÔö´óL¡¢¼õСU1»ò¼õСd£®
´ð£º£¨1£©ÒªÊ¹µç×Ó´ÓÆ½Ðаå¼ä·É³ö£¬Á½¼«°å¼äÉÏ×î¶àÄܼӶà´óƫתµçѹΪ625V£»
£¨2£©µç×ÓÀ뿪µç³¡Ê±×î´óµÄƫת½Ç¶È¦ÕΪarctan0.25£»
£¨3£©ÎªÁËÌá¸ßÁéÃô¶È¿É²ÉÓÃÔö´óL¡¢¼õСU1»ò¼õСd£®
µãÆÀ ±¾Ì⿼²é´øµçÁ£×ÓÔڵ糡ÖÐµÄÆ«×ª£¬ÔÚÁÐʽ¼ÆËãʱӦעÒâ²»ÒªÌáǰ´úÈëÊýÖµ£¬Ó¦½«¹«Ê½¼ò»¯ºóÔÙ¼ÆË㣬ÕâÑù¿ÉÒÔ¼õÉÙ¼ÆËãÁ¿£®
| A£® | ÎïÌåAÒ²×öÔÈËÙÖ±ÏßÔ˶¯ | |
| B£® | Éþ×ÓÀÁ¦Ê¼ÖÕ²»Ò»¶¨´óÓÚÎïÌåAËùÊÜÖØÁ¦ | |
| C£® | Éþ×Ó¶ÔÎïÌåAµÄÀÁ¦Öð½¥Ôö´ó | |
| D£® | Éþ×Ó¶ÔÎïÌåAµÄÀÁ¦Öð½¥¼õС |
| A£® | ´øµçºÉÁ¿ | B£® | Ô˶¯ÖÜÆÚ | C£® | Ô˶¯°ë¾¶ | D£® | Ô˶¯ËÙÂÊ |
| A£® | Èçͼ¼×£¬ÀëµãµçºÉµÈ¾àµÄa¡¢bÁ½µã | |
| B£® | ÈçͼÒÒ£¬´ïµ½¾²µçƽºâʱµ¼ÌåÄÚ²¿µÄa¡¢bÁ½µã | |
| C£® | Èçͼ±û£¬´øµçƽÐаåµçÈÝÆ÷ÖУ¬ÓëÕý¼«°å²»µÈ¾àµÄa¡¢bÁ½µã | |
| D£® | Èçͼ¶¡£¬Á½¸öµÈÁ¿Í¬ÖÖµçºÉÁ¬ÏßµÄÖд¹ÏßÉÏ£¬ÓëÁ¬ÏßÖеãOµÈ¾àµÄa¡¢bÁ½µã |
| A£® | M1£¼M2£¼M3£¼M4 | B£® | M2£¾M1=M3£¾M4 | C£® | M2£¾M3£¾M1£¾M4 | D£® | M2£¾M4£¾M3=M1 |