ÌâÄ¿ÄÚÈÝ
6£®| A£® | $\frac{2¦Ð{R}_{2}{r}_{1}}{T{r}_{2}}$ | B£® | $\frac{4¦Ð{R}_{2}{r}_{1}}{T{r}_{2}}$ | C£® | $\frac{2¦Ð{R}_{2}{R}_{1}}{T{r}_{2}}$ | D£® | $\frac{4¦Ð{R}_{2}{R}_{1}}{T{r}_{1}}$ |
·ÖÎö ÒÑÖª½Å̤°åµÄÖÜÆÚ£¬´Ó¶øÇó³ö½Å̤°åµÄ½ÇËÙ¶È£¬×¥×¡½Å̤°åºÍ´ó³ÝÂֵĽÇËÙ¶ÈÏàµÈÇó³ö´ó³ÝÂֵĽÇËÙ¶È£»Í¨¹ý´óС³ÝÂÖµÄÏßËÙ¶ÈÏàµÈÇó³öС³ÝÂֵĽÇËÙ¶È£¬¸ù¾ÝС³ÝÂֵĽÇËÙ¶ÈÓëºóÂֵĽÇËÙ¶ÈÏàµÈÇó³ö×ÔÐгµµÄÏßËÙ¶È£®
½â´ð ½â£º½Å̤°åµÄ½ÇËÙ¶ÈΪ£º$¦Ø=\frac{2¦Ð}{T}$£»
´ó³ÝÂֵĽÇËÙ¶È£º$¦Ø=\frac{2¦Ð}{T}$£»
´ó³ÝÂֵıßÔµµãÏßËÙ¶È£ºv=¦Ør1=$\frac{2¦Ð{r}_{1}}{T}$£»
С³ÝÂÖ±ßÔµµãÏßËÙ¶È£ºv=$\frac{2¦Ð{r}_{1}}{T}$£»
С³ÝÂÖ½ÇËÙ¶È£º¦Ø¡ä=$\frac{v}{{r}_{2}}$=$\frac{2¦Ð{r}_{1}}{T{r}_{2}}$£»
ºóÂÖ½ÇËÙ¶È£º¦Ø¡ä=$\frac{2¦Ð{r}_{1}}{T{r}_{2}}$£»
×ÔÐгµËÙ¶È£ºv¡ä=¦Ø¡ä•R2=$\frac{2¦Ð{R}_{2}{r}_{1}}{T{r}_{2}}$
¹ÊÑ¡£ºA£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀ¿¿Á´Ìõ´«¶¯£¬ÏßËÙ¶ÈÏàµÈ£¬¹²Öáת¶¯£¬½ÇËÙ¶ÈÏ࣬Áé»îÓ¦ÓæØ=$\frac{v}{r}$ºÍT=$\frac{2¦Ð}{T}$Çó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
17£®
ÈçͼÊDZĴ²Ô˶¯Ô±ÂäÔÚµ¯»É´²ÃæµÄʾÒâͼ£¬ÔÚµ¯»Éµ¯Á¦µÄ×÷ÓÃÏ£¬¿ÉÊÓΪÖʵãµÄÔ˶¯Ô±ÔÚÏÂÂäµ½×îµÍµãǰ£¬ÓÐÒ»¶ÎÊúÖ±ÏòÏÂ×ö¼õËÙÔ˶¯µÄ»º³å¹ý³Ì£¬ºöÂÔ¿ÕÆø×èÁ¦£¬Ôڴ˹ý³ÌÖУ¨¡¡¡¡£©
| A£® | Ô˶¯Ô±´¦ÓÚ³¬ÖØ×´Ì¬ | |
| B£® | Ô˶¯Ô±¶Ôµ¯»ÉµÄѹÁ¦×ܵÈÓÚÔ˶¯Ô±µÄÖØÁ¦ | |
| C£® | Ô˶¯Ô±¶Ôµ¯»É´²ÓÐѹÁ¦ÊÇÒòΪµ¯»É´²·¢ÉúÁ˵¯ÐÔÐαä | |
| D£® | Ô˶¯Ô±¶Ôµ¯»É´²µÄѹÁ¦´óÓÚµ¯»É´²¶ÔÔ˶¯Ô±µÄÖ§³ÖÁ¦ |
1£®Ò»ÎïÌå×Ôt=0ʱ¿ªÊ¼×öÖ±ÏßÔ˶¯£¬ÆäËÙ¶ÈͼÏßÈçͼËùʾ£®ÏÂÁÐÑ¡ÏîÕýÈ·µÄÊÇ£¨¡¡¡¡£©

| A£® | ÔÚ0¡«6sÄÚ£¬ÎïÌåÀë³ö·¢µã×îԶΪ30m | |
| B£® | ÔÚ0¡«6sÄÚ£¬ÎïÌå¾¹ýµÄ·³ÌΪ40m | |
| C£® | ÔÚ0¡«6sÄÚ£¬ÎïÌåµÄƽ¾ùËÙÂÊΪ7.5m/s | |
| D£® | ÔÚ5¡«6sÄÚ£¬ÎïÌåµÄ¼ÓËÙ¶ÈÓëËÙ¶È·½ÏòÏà·´ |
15£®ÈçͼËùʾΪÇâÔ×ÓÄܼ¶Í¼£¬¿É¼û¹âµÄ¹â×ÓÄÜÁ¿·¶Î§Ô¼Îª1.62eV¡«11eV£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©

| A£® | ´óÁ¿´¦ÔÚn£¾2µÄ¸ßÄܼ¶µÄÇâÔ×ÓÏòn=2Äܼ¶Ô¾Ç¨Ê±£¬·¢³öµÄ¹â¿ÉÄÜÊÇ×ÏÍâÏß | |
| B£® | ´óÁ¿´¦ÔÚn=3µÄÇâÔ×ÓÏòn=2Äܼ¶Ô¾Ç¨Ê±£¬·¢³öµÄ¹â¾ßÓÐÓ«¹âЧӦ | |
| C£® | ´óÁ¿´¦ÔÚn=3Äܼ¶µÄÇâÔ×ÓÏòn=1Äܼ¶Ô¾Ç¨Ê±£¬·¢³öµÄ¹âÊǺìÍâÏß | |
| D£® | ´¦ÔÚn=3Äܼ¶µÄÇâÔ×ÓÎüÊÕÈÎÒâÆµÂʵĿɼû¹âµÄ¹â×Ó¶¼ÄÜ·¢ÉúµçÀë |