ÌâÄ¿ÄÚÈÝ
6£®£¨1£©Îï¿é¾¹ýB¶ËʱµÄËÙ¶È´óС£»
£¨2£©Îï¿éÓë´«ËÍ´ø¼äµÄ¶¯Ä¦²ÁÒòÊý£»
£¨3£©Èô´«ËÍ´øÔÈËÙת¶¯£¬¿ÉÄÜ»áÓ°ÏìÎï¿éÂ䵨µãµÄλÖã®ÊÔͨ¹ý·ÖÎö˵Ã÷£¬ÒªÊ¹Îï¿éÈÔÂäÔÚMµã£¬´«ËÍ´øËÙ¶ÈÓ¦Âú×ãµÄÌõ¼þ£®
·ÖÎö £¨1£©Îï¿éÀ뿪Bµã×öƽÅ×Ô˶¯£¬Óɸ߶ÈhÇóµÃƽÅ×Ô˶¯µÄʱ¼ä£¬ÔÙ½áºÏË®Æ½Î»ÒÆºÍʱ¼äÇóÎï¿é¾¹ýB¶ËʱµÄËÙ¶È´óС£»
£¨2£©¶ÔÓÚÎï¿éÔÚ´«ËÍ´øÉÏÔ˶¯µÄ¹ý³Ì£¬ÔËÓö¯Äܶ¨ÀíÁÐʽ£¬¿ÉÇóµÃÎï¿éÓë´«ËÍ´ø¼äµÄ¶¯Ä¦²ÁÒòÊý£»
£¨3£©ÒªÊ¹Îï¿éÈÔÂäÔÚMµã£¬Îï¿é¾¹ýBµãµÄËÙ¶ÈÓ¦²»±ä£®¸ù¾ÝÎïÌåÔÚ´«ËÍ´øÉϵÄÊÜÁ¦Çé¿ö£¬À´·ÖÎöÆäÔ˶¯Çé¿ö£¬´Ó¶ø½øÐÐÅжϣ®
½â´ð ½â£º£¨1£©Îï¿éÀ뿪Bµã×öƽÅ×Ô˶¯£¬ÔòÓУº
h=$\frac{1}{2}$gt2
x=vBt
ÁªÁ¢½âµÃÎï¿é¾¹ýB¶ËʱµÄËÙ¶È´óСΪ£º
vB=x$\sqrt{\frac{g}{2h}}$=5m/s
£¨2£©¶ÔÓÚÎï¿éÔÚ´«ËÍ´øÉÏÔ˶¯µÄ¹ý³Ì£¬ÔËÓö¯Äܶ¨ÀíµÃ
$\frac{1}{2}$mvB2-$\frac{1}{2}$mv02=-¦ÌmgL
½âµÃ£º¦Ì=0.2
£¨3£©Èô´«ËÍ´øÄæÊ±ÕëÔ˶¯£¬ÓÉÓÚĦ²ÁÁ¦×ö¹¦Óë´«ËÍ´ø¾²Ö¹Çé¿öÏàͬ£¬¹ÊÎï¿éµ½´ïBµãËÙ¶ÈÈÔΪ5m/s£¬²»ÂÛËٶȶà´ó£¬Îï¿éÈÔÂäÔÚMµã£»
Èô´«ËÍ´øË³Ê±ÕëÔ˶¯£¬ËÙ¶Èv¡Ü5m/s£¬ÔòÎï¿éĦ²ÁÁ¦×ö¹¦Óë´«ËÍ´ø¾²Ö¹Çé¿öÏàͬ£¬¹ÊÎï¿éµ½´ïBµãËÙ¶ÈÈÔΪ5m/s£¬Îï¿éÂäÔÚMµã£®
Èô´«ËÍ´øË³Ê±ÕëÔ˶¯ËÙ¶Èv£¾5m/s£¬Îï¿éµ½´ïBµãËÙ¶È´óÓÚ5 m/s£¬Îï¿éÂäÔÚMµãÓÒ·½£®
¼´µ±´«ËÍ´øÄæÊ±ÕëÔ˶¯»ò´«ËÍ´øË³Ê±ÕëÔ˶¯ÇÒËÙ¶Èv¡Ü5m/sʱ£¬Îï¿éÈÔÂäÔÚMµã£®
´ð£º£¨1£©Îï¿é¾¹ýB¶ËʱµÄËÙ¶È´óСÊÇ5m/s£®
£¨2£©Îï¿éÓë´«ËÍ´ø¼äµÄ¶¯Ä¦²ÁÒòÊýÊÇ0.2£®
£¨3£©Èô´«ËÍ´øÄæÊ±ÕëÔ˶¯£¬ÓÉÓÚĦ²ÁÁ¦×ö¹¦Óë´«ËÍ´ø¾²Ö¹Çé¿öÏàͬ£¬¹ÊÎï¿éµ½´ïBµãËÙ¶ÈÈÔΪ5m/s£¬²»ÂÛËٶȶà´ó£¬Îï¿éÈÔÂäÔÚMµã£»Èô´«ËÍ´øË³Ê±ÕëÔ˶¯£¬ËÙ¶Èv¡Ü5m/s£¬ÔòÎï¿éĦ²ÁÁ¦×ö¹¦Óë´«ËÍ´ø¾²Ö¹Çé¿öÏàͬ£¬¹ÊÎï¿éµ½´ïBµãËÙ¶ÈÈÔΪ5m/s£¬Îï¿éÂäÔÚMµã£®Èô´«ËÍ´øË³Ê±ÕëÔ˶¯ËÙ¶Èv£¾5m/s£¬Îï¿éµ½´ïBµãËÙ¶È´óÓÚ5 m/s£¬Îï¿éÂäÔÚMµãÓÒ·½£®¼´µ±´«ËÍ´øÄæÊ±ÕëÔ˶¯»ò´«ËÍ´øË³Ê±ÕëÔ˶¯ÇÒËÙ¶Èv¡Ü5m/sʱ£¬Îï¿éÈÔÂäÔÚMµã£®
µãÆÀ ±¾Ìâ¹Ø¼üÊǶÔС»¬¿éµÄÔ˶¯Çé¿ö·ÖÎöÇå³þ£¬È»ºó¸ù¾Ý¶¯Äܶ¨Àí¡¢Ô˶¯Ñ§¹«Ê½ºÍƽÅ×Ô˶¯µÄ·ÖÎ»ÒÆ¹«Ê½ÁÐʽ½â´ð£®
| A£® | ÓÃÊÖ½«Ð¡ÇòÊúÖ±ÏòÉÏÅ׳öºó£¬Ð¡ÇòÈÔÏòÉÏÔ˶¯ÊÇÒòΪСÇò»¹Êܵ½ÊÖ¶ÔËüµÄ×÷Óà | |
| B£® | Ħ²ÁÁ¦µÄ·½Ïò×ÜÊÇÓëÎïÌåµÄÏà¶ÔÔ˶¯»òÏà¶ÔÔ˶¯Ç÷ÊÆ·½ÏòÏà·´ | |
| C£® | ·ÅÔÚˮƽ×ÀÃæÉϾ²Ö¹µÄÊé¶Ô×ÀÃæµÄѹÁ¦¾ÍÊÇÊéµÄÖØÁ¦ | |
| D£® | ÂíÀ³µ×ö¼ÓËÙÔ˶¯£¬ÊÇÂíÀ³µµÄÁ¦´óÓÚ³µÀÂíµÄÁ¦ |
| A£® | ¼×³µÏÈ×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔÙÑØÔ·½Ïò×öÔȼõËÙÖ±ÏßÔ˶¯ | |
| B£® | ÔÚµÚ20sÄ©£¬¼×¡¢ÒÒÁ½³µµÄ¼ÓËÙ¶È´óСÏàµÈ | |
| C£® | ÔÚµÚ30sÄ©£¬¼×¡¢ÒÒÁ½³µÏà¾à100m | |
| D£® | ÔÚÕû¸öÔ˶¯¹ý³ÌÖУ¬¼×¡¢ÒÒÁ½³µÒ»¶¨ÏàÓöÁ½´Î |
| A£® | ÏòÓÒ | B£® | Ïò×ó | C£® | ÏòÉÏ | D£® | ÏòÏÂ |
| A£® | 4E | B£® | $\frac{E}{4}$ | C£® | 2E | D£® | $\frac{E}{2}$ |
| A£® | ÎïÌåµÄÖØÐÄÒ»¶¨ÔÚÎïÌåÉÏ | |
| B£® | ÖØÁ¦µÄ×÷ÓõãÊÇÖØÐÄ£¬ËüÊÇÎïÌåÄÚ×îÖØµÄÒ»µã | |
| C£® | ÎïÌåµÄÖØÐÄλÖøúÎïÌåµÄÖÊÁ¿·Ö²¼Çé¿öºÍÎïÌåµÄÐÎ×´ÓÐ¹Ø | |
| D£® | ÓÃÏßÐü¹ÒµÄ¾²Ö¹ÎïÌ壬ϸÏß·½Ïò²»Ò»¶¨Í¨¹ýÎïÌåµÄÖØÐÄ |
| A£® | Á½µ¯»É²âÁ¦¼ÆµÄÀÁ¦¿ÉÒÔͬʱ±ÈÏðƤÌõµÄÀÁ¦´ó | |
| B£® | ÏðƤÌõµÄÀÁ¦ÊǺÏÁ¦£¬Á½µ¯»É²âÁ¦¼ÆµÄÀÁ¦ÊÇ·ÖÁ¦ | |
| C£® | Á½´ÎÀÏðƤÌõʱ£¬Ð轫ÏðƤÌõ½áµãÀµ½Í¬Ò»Î»ÖÃO£¬ÕâÑù×öµÄÄ¿µÄÊDZ£Ö¤Á½´Îµ¯»É²âÁ¦¼ÆÀÁ¦µÄЧ¹ûÏàͬ | |
| D£® | Ϊ¼õС²âÁ¿Îó²î£¬Á½·ÖÁ¦F1¡¢F2·½Ïò¼ä¼Ð½ÇӦΪ90¡ã |
| A£® | ¡÷U2=¡÷U1+¡÷U3 | B£® | $\frac{¡÷{U}_{3}}{¡÷I}$=R+r | ||
| C£® | µçÔ´Êä³ö¹¦ÂÊÏÈÔö´óºó¼õС | D£® | $\frac{¡÷{U}_{1}}{¡÷I}$ºÍ$\frac{¡÷{U}_{2}}{¡÷I}$±£³Ö²»±ä |