题目内容

2.跳伞运动员在空中打开降落伞一段时间后,保持匀速下降.已知运动员的重量为G1,圆顶形伞面的重量为G2,在伞面边缘有24条均匀分布的相同轻细拉线与运动员相连,每根拉线和竖直方向都成30°角.设运动员所受空气阻力不计,则每根拉线上的张力大小为(  )
A.$\frac{{\sqrt{3}{G_1}}}{36}$B.$\frac{G_1}{12}$C.$\frac{{{G_1}+{G_2}}}{24}$D.$\frac{{\sqrt{3}({G_1}+{G_2})}}{36}$

分析 运动员受本身的重力及24根丝线的拉力而处于平衡状态;将丝线的拉力分解为水平和竖直两个方 向上的分力,则竖直上的分力之和等于向下的重力.

解答 解:如图以一根丝线为例,每根丝线拉力向上的分力F1=Fcos30°=$\frac{\sqrt{3}}{2}$F;
由共点力的平衡条件可知:
24F1=G1
解得:F=$\frac{\sqrt{3}}{36}$G1
故选:A.

点评 本题注意24根绳子在竖直方向上的分力均是相同的,而向上的合力与向下的重力一定是大小相等、方向相反的.

练习册系列答案
相关题目
7.利用如图1所示的实验装置,可以探究“加速度与质量、受力的关系”.

实验时,首先调整垫木的位置,使小车不挂配重时能在倾斜长木板上做匀速直线运动,以平衡小车运动过程中所受的摩擦力.再把细线系在小车上,绕过定滑轮与配重连接.调节滑轮的高度,使细线与长木板平行.在接下来的实验中,各组情况有所不同.
(1)甲组同学的实验过程如下:
①保持小车质量一定,通过改变配重片数量来改变小车受到的拉力.改变配重片数量一次,利用打点计时器打出一条纸带.重复实验,得到5条纸带和5个相应配重的重量.
②图2是其中一条纸带的一部分,A、B、C为3个相邻计数点,每两个相邻计数点之间还有4个实际打点没有画出.通过对纸带的测量,可知A、B间的距离为2.30cm,B、C间的距离为2.70cm.已知打点计时器的打点周期为0.02s,则小车运动的加速度大小为0.40 m/s2
③分析纸带,求出小车运动的5个加速度a.用相应配重的重量作为小车所受的拉力大小F,画出小车运动的加速度a与小车所受拉力F之间的a-F图象,如图3所示.由图象可知小车的质量约为0.30kg(结果保留两位有效数字).
(2)乙组同学的实验过程如下:
①用5个质量均为50g的钩码作为配重进行实验.
②将钩码全部挂上进行实验,打出纸带.
③从配重处取下一个钩码放到小车里,打出纸带.
④重复③的实验,共得到5条纸带.
⑤分析纸带,得出实验数据,画出小车加速度与悬挂钩码所受重力的之间a-F图象.
乙组同学在实验基础上进行了一些思考,提出以下观点,你认为其中正确的是BD.
A.若继续增加悬挂钩码的数量,小车加速度可以大于当地的重力加速度
B.根据a-F图象,可以计算出小车的质量
C.只有当小车质量远大于悬挂钩码的质量时,a-F图象才近似为一条直线
D.无论小车质量是否远大于悬挂钩码的质量,a-F图象都是一条直线.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网