ÌâÄ¿ÄÚÈÝ
14£®£¨1£©ÇóСÇò×ÔÅ׳öµ½µÚÒ»´ÎÂ䵨µãPµÄ¹ý³ÌÖз¢ÉúµÄË®Æ½Î»ÒÆxµÄ´óС£®
£¨2£©ÈôÔÚ¿Õ¼ä¼ÓÒ»¸öÊúÖ±·½ÏòµÄÔÈÇ¿µç³¡£¬·¢ÏÖСÇòÒÔÏàͬ·½Ê½Ë®Æ½Å׳öºó×öÔÈËÙÖ±ÏßÔ˶¯£¬ÇëÅжϵ糡µÄ·½Ïò²¢Çó³öµç³¡Ç¿¶ÈEµÄ´óС£®
£¨3£©ÈôÔÚ¿Õ¼äÔÙ¼ÓÒ»¸ö´¹Ö±Ö½ÃæµÄÔÈÇ¿´Å³¡£¬·¢ÏÖСÇòÒÔÏàͬ·½Ê½Ë®Æ½Å׳öºóµÚÒ»´ÎÂ䵨µãÈÔÈ»ÊÇP£®ÒÑÖªOP¼äµÄ¾àÀë´óÓÚh£¬ÇëÅжϴų¡µÄ·½Ïò²¢Çó³ö´Å¸ÐӦǿ¶ÈB£®
·ÖÎö £¨1£©Ð¡Çò×öƽÅ×Ô˶¯£¬¸ù¾Ý·ÖÎ»ÒÆ¹«Ê½ÁÐʽÇó½â¼´¿É£»
£¨2£©Ð¡ÇòÒÔÏàͬ·½Ê½Ë®Æ½Å׳öºó×öÔÈËÙÖ±ÏßÔ˶¯£¬µç³¡Á¦ÓëÖØÁ¦Æ½ºâ£¬¸ù¾Ý³¡Ç¿µÄ¶¨ÒåÇó½â³¡Ç¿£»
£¨3£©µç³¡Á¦ÓëÖØÁ¦Æ½ºâ£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬½áºÏ¼¸ºÎ¹ØÏµÇó½â°ë¾¶£¬È»ºó¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽÇó½â´Å¸ÐӦǿ¶ÈBµÄ´óС£®
½â´ð ½â£º£¨1£©ÓÉÆ½Å×֪ʶ֪$h=\frac{1}{2}g{t^2}$
x=v0t
ÁªÁ¢Á½Ê½µÃË®Æ½Î»ÒÆ$x={v_0}\sqrt{\frac{2h}{g}}$
£¨2£©ÓÉÌâÒâÖª£¬µç³¡µÄ·½ÏòÊúÖ±ÏòÏ£®
ÓɶþÁ¦Æ½ºâ Eq=mg
µÃ $E=\frac{mg}{q}$
£¨3£©ÓÉÌâÒâÖª£¬ÔÈÇ¿´Å³¡·½Ïò´¹Ö±Ö½ÃæÏòÀ
Óɼ¸ºÎ¹ØÏµ £¨r-h£©2+x2=r2
ÓÉÅ£¶ÙÔ˶¯¶¨ÂÉ $q{v_0}B=\frac{mv_0^2}{r}$
ÁªÁ¢Á½Ê½µÃ $B=\frac{{2mg{v_0}}}{q£¨gh+2v_0^2£©}$
´ð£º£¨1£©Ð¡Çò×ÔÅ׳öµ½µÚÒ»´ÎÂ䵨µãPµÄ¹ý³ÌÖз¢ÉúµÄË®Æ½Î»ÒÆxµÄ´óСΪ${v}_{0}\sqrt{\frac{2h}{g}}$£»
£¨2£©µç³¡µÄ·½ÏòÊúÖ±ÏòÏ£®µç³¡Ç¿¶ÈEµÄ´óСΪ$\frac{mg}{q}$£®
£¨3£©´Å³¡µÄ·½ÏòΪ´¹Ö±Ö½ÃæÏòÀ´Å¸ÐӦǿ¶È´óСΪ$\frac{2mg{v}_{0}}{q£¨gh+2{{v}_{0}}^{2}£©}$£®
µãÆÀ ±¾Ìâ¹Ø¼üÃ÷ȷСÇòµÄÔ˶¯ÐÔÖÊ£¬È»ºó¸ù¾ÝƽÅ×Ô˶¯µÄ·ÖÔ˶¯¹«Ê½¡¢Ö±ÏßÔ˶¯µÄÌõ¼þ¡¢Å£¶ÙµÚ¶þ¶¨ÂÉÁз½³Ì£¬²»ÄÑ£®
| A£® | µØÇòµÄµÚÒ»ÓîÖæËÙ¶ÈСÓÚv | B£® | ¸ÃÎÀÐǵĹìµÀ°ë¾¶Îª$\frac{{v}^{2}}{g{R}^{2}}$ | ||
| C£® | ¸ÃÎÀÐǵÄÔËÐÐÖÜÆÚΪ2¦Ð$\frac{{gR}^{2}}{{v}^{3}}$ | D£® | ¸ÃÎÀÐǵÄÏòÐļÓËÙ¶ÈΪ$\frac{{v}^{2}}{g{R}^{2}}$ |
| A£® | µç¶¯ÊƱíÕ÷µÄÊǵçÔ´½«µçÄÜת»¯ÎªÆäËüÐÎʽÄÜÁ¿µÄ±¾Áì | |
| B£® | Íâµç·¶Ï¿ªÊ±µÄ·¶ËµçѹµÈÓÚµçÔ´µÄµç¶¯ÊÆ | |
| C£® | µç¶¯ÊÆÊýÖµÉϵÈÓڱպϵç·ÄÚÍâµçѹ֮ºÍ | |
| D£® | Íâµç·µÄ×ܵç×èÔ½´ó£¬Ôò·¶ËµçѹԽ½Ó½üµçÔ´µç¶¯ÊÆ |
| A£® | Å£¶Ù×ܽá³öÁËÍòÓÐÒýÁ¦¶¨Âɲ¢²â³öÁËÍòÓÐÒýÁ¦³£Á¿ | |
| B£® | ÀúÊ·ÉÏÊ×ÏÈÕýÈ·ÈÏʶÁ¦ºÍÔ˶¯µÄ¹ØÏµ£¬ÍÆ·¡°Á¦ÊÇά³ÖÎïÌåÔ˶¯µÄÔÒò¡±¹ÛµãµÄÎïÀíѧ¼ÒÊÇÙ¤ÀûÂÔ | |
| C£® | °²Åà×îÔç·¢ÏÖÁ˵çÁ÷ÖÜΧ´æÔÚ×Ŵų¡ | |
| D£® | ·¨ÀµÚ·¢ÏÖÁ˵ç´Å¸ÐÓ¦ÏÖÏó£¬×ܽá³öÁ˵ç´Å¸ÐÓ¦¶¨ÂÉ |
| A£® | a=a1 | B£® | a1=a2 | C£® | a1£¾a2 | D£® | a1£¼a2 |
| A£® | ÐÐÐÇÔÚÍÖÔ²¹ìµÀÉÏÈÆÌ«ÑôÔ˶¯µÄ¹ý³ÌÖУ¬ÆäËÙ¶ÈËæÐÐÐÇÓëÌ«ÑôÖ®¼ä¾àÀëµÄ±ä»¯¶ø±ä»¯£¬¾àÀëСʱËÙ¶ÈС£¬¾àÀë´óʱËÙ¶È´ó | |
| B£® | ¿ªÆÕÀÕµÚÈý¶¨ÂÉÖж¨ÖµKÓëÐÐÐǵÄÖÊÁ¿Î޹أ¬Ö»ÓëÌ«ÑôµÄÖÊÁ¿ÓÐ¹Ø | |
| C£® | ËùÓÐÐÐÐÇÈÆÌ«ÑôÔ˶¯µÄÖÜÆÚÊÇÏàµÈµÄ | |
| D£® | ÐÐÐÇÔÚÍÖÔ²¹ìµÀÉÏÈÆÌ«ÑôÔ˶¯µÄ¹ý³ÌÖУ¬Ì«ÑôÔÚËùÓÐÐÐÐÇÔ˶¯¹ìµÀµÄÒ»¸ö½¹µãÉÏ |
| A£® | Èôv1¡¢t1ÒÑÖª£¬ÔòÆû³µ×÷ÔȼÓËÙÔ˶¯µÄ¼ÓËÙ¶ÈΪa=$\frac{{v}_{1}}{{t}_{1}}$ | |
| B£® | Èôv1¡¢t1ºÍv2ÒÑÖª£¬ÔòÆû³µµÄ¶î¶¨¹¦ÂÊP0=£¨m$\frac{{v}_{1}}{{t}_{1}}$+f£©v2 | |
| C£® | Èôv1¡¢t1ÒÑÖª£¬ÔòÆû³µÔ˶¯µÄ×î´óËÙ¶Èv2=£¨$\frac{m{v}_{1}}{f{t}_{1}}$+1£©v1 | |
| D£® | ÔÚtlµ½t2ʱ¼äÄÚ£¬Æû³µµÄƽ¾ùËÙ¶È$\overline{v}$£¼$\frac{{v}_{1}+{v}_{2}}{2}$ |