ÌâÄ¿ÄÚÈÝ
17£®| A£® | ¸Ã±äѹÆ÷Ô¡¢¸±ÏßȦµÄÔÑÊýÖ®±ÈӦΪ55£º3 | |
| B£® | ¸Ã±äѹÆ÷Ô¡¢¸±ÏßȦµÄÔÑÊýÖ®±ÈӦΪ3£º55 | |
| C£® | ½«¿ª¹ØS1¶Ï¿ª£¬Ôòͨ¹ý¸Ã±äѹÆ÷ÔÏßȦµÄµçÁ÷½«±äС | |
| D£® | ½«¿ª¹ØS1¶Ï¿ª£¬Ôò¸Ã±äѹÆ÷ÔÏßȦµÄÊäÈ빦Âʽ«±äС |
·ÖÎö Êä³öµçѹÊÇÓÉÊäÈëµçѹºÍÔÑÊý±È¾ö¶¨µÄ£¬µçѹÓëÔÑÊý³ÉÕý±È£¬µçÁ÷ÓëÔÑÊý³É·´±È£¬¸ù¾ÝÀíÏë±äѹÆ÷µÄÔÀí·ÖÎö¼´¿É£®
½â´ð ½â£ºAB¡¢Ð¡µÆÅÝÕý³£·¢¹â£¬ËùÒÔ¸±ÏßȦµçѹΪ12V£¬ÓÉ$\frac{U_1}{U_2}=\frac{n_1}{n_2}$£¬¿ÉÖª±äѹÆ÷Ô¡¢¸±ÏßȦµÄÔÑÊýÖ®±ÈΪ55£º3£¬¹ÊAÕýÈ·£¬B²»ÕýÈ·£»
CD¡¢½«¿ª¹ØS1¶Ï¿ª£¬×ܵç×èÔö´ó£¬Ôòͨ¹ý¸Ã±äѹÆ÷¸±ÏßȦµÄµçÁ÷½«±äС£¬ÔÏßȦµçÁ÷Ò²±äС£¬ÓÉP=UI£¬ËùÒÔÔÏßȦµÄÊäÈ빦Âʽ«±äС£¬¹ÊCDÕýÈ·£»
±¾ÌâÑ¡²»ÕýÈ·µÄ£¬¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÁ˱äѹÆ÷µÄ±äѹÔÀí£¬¹Ø¼üÒªÖªµÀµçѹÓëÔÑÊý³ÉÕý±È£¬ÊäÈ빦ÂʵÈÓÚÊä³ö¹¦ÂÊ£¬²¢ÄÜÕýÈ·ÁÐʽÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®
ÔÚÇã½ÇΪ30¡ãµÄÐ±ÃæÉÏ£¬Ä³ÈËÓÃÆ½ÐÐÓÚÐ±ÃæµÄÁ¦°ÑÔÀ´¾²Ö¹ÓÚÐ±ÃæÉϵÄÖÊÁ¿Îª2kgµÄÎïÌåÑØÐ±ÃæÏòÏÂÍÆÁË2mµÄ¾àÀ룬²¢Ê¹ÎïÌå»ñµÃ1m/sµÄËÙ¶È£¬ÒÑÖªÎïÌåÓëÐ±Ãæ¼äµÄ¶¯Ä¦²ÁÒòÊýΪ$\frac{{\sqrt{3}}}{3}$£¬gÈ¡10m/s2£¬ÈçͼËùʾ£¬ÔòÔÚÕâ¸ö¹ý³ÌÖУ¨¡¡¡¡£©
| A£® | È˶ÔÎïÌå×ö¹¦21J | B£® | ºÏÍâÁ¦¶ÔÎïÌå×ö¹¦1J | ||
| C£® | ÎïÌå¿Ë·þĦ²ÁÁ¦×ö¹¦21J | D£® | ÎïÌåÖØÁ¦ÊÆÄܼõС40J |
8£®ÈçͼËùʾΪ¼×¡¢ÒÒÁ½µÈÖÊÁ¿µÄÖʵã×ö¼òгÔ˶¯µÄͼÏó£¬ÒÔÏÂ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©

| A£® | ¼×¡¢ÒÒµÄÕñ·ù¸÷Ϊ2mºÍ1m | |
| B£® | Èô¼×¡¢ÒÒΪÁ½¸öµ¯»ÉÕñ×Ó£¬ÔòËùÊܻظ´Á¦×î´óÖµÖ®±ÈΪ F¼×£ºFÒÒ=2£º1 | |
| C£® | ÒÒÕñ¶¯µÄ±í´ïʽΪ x=sin$\frac{¦Ð}{4}$t£¨cm£© | |
| D£® | t=2sʱ£¬¼×µÄËÙ¶ÈΪÁ㣬ÒҵļÓËÙ¶È´ïµ½×î´óÖµ |
5£®ÖÊÁ¿M=327 kgµÄСÐÍ»ð¼ý£¨º¬È¼ÁÏ£©Óɾ²Ö¹·¢É䣬·¢Éäʱ¹²Åç³öÖÊÁ¿m=27kgµÄÆøÌ壬ÉèÅç³öµÄÆøÌåÏà¶ÔµØÃæµÄËٶȾùΪv=1000m/s£®ºöÂÔµØÇòÒýÁ¦ºÍ¿ÕÆø×èÁ¦µÄÓ°Ï죬ÔòÆøÌåÈ«²¿Åç³öºó£¬»ð¼ýµÄËÙ¶È´óСΪ£¨¡¡¡¡£©
| A£® | 76 m/s | B£® | 82 m/s | C£® | 90 m/s | D£® | 99 m/s |
12£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | .¶¯Á¿·¢Éú±ä»¯£¬¶¯ÄÜÒ»¶¨·¢Éú±ä»¯ | |
| B£® | .¶¯ÄÜ·¢Éú±ä»¯£¬¶¯Á¿Ò»¶¨·¢Éú±ä»¯ | |
| C£® | ¶¯Äܱ仯ΪÁ㣬¶¯Á¿±ä»¯Ò»¶¨ÎªÁã | |
| D£® | .ºÏÍâÁ¦³åÁ¿µÄ·½ÏòÓ붯Á¿µÄ·½ÏòÒ»Ö |
2£®ÏÂÁÐÇé¿öÖеÄÔ˶¯ÎïÌ壨¼Óµã×Ö£©£¬²»Äܱ»¿´³ÉÖʵãµÄÊÇ£¨¡¡¡¡£©
| A£® | Ñо¿ÈƵØÇò·ÉÐÐʱÉñÖÛÁùºÅ·µ»Ø²ÕµÄ¹ìµÀ | |
| B£® | Ñо¿·ÉÐÐÖÐÖ±Éý·É»úÉϵÄÂÝÐý½¬µÄת¶¯Çé¿ö | |
| C£® | ÔÚ´óº£Öк½ÐеĴ¬£¬ÒªÈ·¶¨ËüÔڴ󺣵ÄλÖÃʱ | |
| D£® | ¼ÆËãÔÚ´«ËÍ´øÉÏÊäË͵Ť¼þÊýÁ¿ |
6£®Á½¸öÖÊÁ¿·Ö±ðΪm1¡¢m2µÄÎïÌ壨¿É¿´×÷Öʵ㣩£¬ËüÃǵľàÀëΪr£¬ÔòËüÃÇÖ®¼äµÄÍòÓÐÒýÁ¦FÊÇ£¨¡¡¡¡£©
| A£® | $F=G\frac{{{m_1}{m_2}}}{r^2}$ | B£® | $F=G\frac{r^2}{{{m_1}{m_2}}}$ | C£® | $F=G\frac{{{m_1}{m_2}}}{r}$ | D£® | $F=\frac{{{m_1}{m_2}}}{r^2}$ |