ÌâÄ¿ÄÚÈÝ
6£®| A£® | ÖÊÁ¿´óµÄÎÀÐÇ£¬Æä¼ÓËÙ¶ÈÒ²´ó | |
| B£® | ÎÀÐÇ1ÏòºóÅçÆø¾ÍÒ»¶¨ÄÜ×·ÉÏÎÀÐÇ2 | |
| C£® | ÎÀÐÇ1ÓÉλÖÃAÔ˶¯µ½Î»ÖÃBËùÐèʱ¼äΪ$\frac{¦Ðr}{3R}\sqrt{\frac{r}{R}}$ | |
| D£® | ÎÀÐÇ1ÓÉλÖÃAÔ˶¯µ½Î»ÖÃBµÄ¹ý³ÌÖÐÍòÓÐÒýÁ¦×ö¹¦ÎªÁã |
·ÖÎö ÎÀÐÇ×öÔ²ÖÜÔ˶¯£¬ÓÉÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÁÐʽµÃµ½¼ÓËٶȺÍÖÜÆÚµÄ±í´ïʽ£¬·ÖÎö¼ÓËٶȵĹØÏµ£¬ÓÉÔ˶¯Ñ§¹«Ê½Çó½âÎÀÐÇ1ÓÉλÖÃAÔ˶¯µ½Î»ÖÃBËùÐèµÄʱ¼ä£»µ±ÎÀÐÇÔÚÒýÁ¦·½ÏòÉÏûÓÐÎ»ÒÆÊ±ÒýÁ¦²»×ö¹¦£®
½â´ð ½â£ºA¡¢ÓÉ$G\frac{Mm}{{r}_{\;}^{2}}=ma$£¬¿ÉÖª$a=\frac{GM}{{r}_{\;}^{2}}$£¬ÓëÎÀÐǵÄÖÊÁ¿Î޹أ¬Á½ÎÀÐǵļÓËÙ¶È´óСÏàµÈ£¬¹ÊA´íÎó£»
B¡¢ÎÀÐÇ1ÏòºóÅçÆøÊ±ÐèÒª¼ÓËÙ£¬ËùÐèÒªµÄÏòÐÄÁ¦Ôö´ó£¬¶øÍòÓÐÒýÁ¦²»±ä£¬ÎÀÐǽ«×öÀëÐÄÔ˶¯£¬¹ìµÀ°ë¾¶Ôö´ó£¬²»¿ÉÄÜ×·ÉÏÎÀÐÇ2£¬¹ÊB´íÎó£®
C¡¢ÓÉ$T=\sqrt{\frac{4{¦Ð}_{\;}^{2}{r}_{\;}^{3}}{GM}}$£¬ÓÖ$G\frac{Mm}{{R}_{\;}^{2}}=mg$¿ÉµÃ$T=\frac{2¦Ðr}{R}\sqrt{\frac{r}{g}}$£¬ÎÀÐÇ1ÓÉAµ½BËùÐèʱ¼ä$t=\frac{T}{6}=\frac{¦Ðr}{3R}\sqrt{\frac{r}{g}}$£¬¹ÊC´íÎó£»
D¡¢ÒòÎÀÐÇÊܵ½µÄÍòÓÐÒýÁ¦ÓëËÙ¶È´¹Ö±£¬¹ÊÍòÓÐÒýÁ¦²»×ö¹¦£¬DÕýÈ·£»
¹ÊÑ¡£ºD
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÒÔ¼°ÖØÁ¦µÈÓÚÍòÓÐÒýÁ¦£¬ÔËÓÃÍòÓÐÒýÁ¦¶¨ÂɺÍÔ²ÖÜÔ˶¯µÄ¹æÂɽáºÏÁÐʽ·ÖÎö£®
| A£® | СÇòµÄ¶¯ÄÜÓëÖØÁ¦ÊÆÄÜÖ®ºÍÔ½À´Ô½Ð¡£¬Ð¡ÇòµÄ¶¯ÄÜÓ뵯ÐÔÊÆÄÜÖ®ºÍÔ½À´Ô½Ð¡ | |
| B£® | СÇòµÄ¶¯ÄÜÓëÖØÁ¦ÊÆÄÜÖ®ºÍÔ½À´Ô½Ð¡£¬Ð¡ÇòµÄ¶¯ÄÜÓ뵯ÐÔÊÆÄÜÖ®ºÍÔ½À´Ô½´ó | |
| C£® | СÇòµÄ¶¯ÄÜÓëÖØÁ¦ÊÆÄÜÖ®ºÍÔ½À´Ô½´ó£¬Ð¡ÇòµÄ¶¯ÄÜÓ뵯ÐÔÊÆÄÜÖ®ºÍÔ½À´Ô½´ó | |
| D£® | СÇòµÄ¶¯ÄÜÓëÖØÁ¦ÊÆÄÜÖ®ºÍÔ½À´Ô½´ó£¬Ð¡ÇòµÄ¶¯ÄÜÓ뵯ÐÔÊÆÄÜÖ®ºÍÔ½À´Ô½Ð¡ |
| A£® | ʵʩµÚÒ»´Î¡°É²³µ¡±µÄ¹ý³Ì£¬½«Ê¹¡°æÏ¶ð¶þºÅ¡±ËðʧµÄ¶¯ÄÜת»¯ÎªÊÆÄÜ£¬×ª»¯¹ý³ÌÖлúеÄÜÊØºã | |
| B£® | µÚÒ»´Î¡°É²³µÖƶ¯¡±Èç¹û²»ÄܼõËÙµ½Ò»¶¨³Ì¶È£¬ÔÂÇò¶ÔËüµÄÒýÁ¦½«»á×ö¸º¹¦ | |
| C£® | Òò¾¶à´Î¡°É²³µ¡±£¬¹ÊÎÀÐÇÔÚ¹ìµÀ¢óÉÏÔ˶¯µÄÖÜÆÚ±ÈÔÚ¹ìµÀIÉϳ¤ | |
| D£® | ÎÀÐÇÔÚ¹ìµÀ¢óÉÏÔ˶¯µ½PµãʱµÄ¼ÓËÙ¶ÈСÓÚÑØ¹ìµÀIÔ˶¯µ½PµãʱµÄ¼ÓËÙ¶È |
| A£® | ¹¦ÊÇʸÁ¿ | B£® | ¹¦ÊDZêÁ¿ | ||
| C£® | Á¦Ô½´ó£¬×ö¹¦Ô½¶à | D£® | Î»ÒÆÔ½´ó£¬×ö¹¦Ô½¶à |