ÌâÄ¿ÄÚÈÝ

20£®ÈçͼËùʾ£¬¹â»¬¾øÔµË®Æ½ÃæÉϾ²Ö¹·ÅÖÃÒ»¸ù³¤ÎªL¡¢ÖÊÁ¿Îªm¡¢´ø+QµçÁ¿µÄ¾øÔµ°ôAB£¬°ôµÄÖÊÁ¿ºÍµçÁ¿·Ö²¼¾ùÔÈ£¬OµãÓÒ²àÇøÓò´æÔÚ´óСΪE¡¢Ë®Æ½Ïò×óµÄÔÈÇ¿µç³¡£¬B¡¢OÖ®¼äµÄ¾àÀëΪx0£®ÏÖ¶Ô°ôÊ©¼ÓˮƽÏòÓÒ¡¢´óСΪF=$\frac{1}{4}$QEµÄºãÁ¦×÷Óã¬Çó£º
£¨1£©B¶Ë½øÈëµç³¡$\frac{1}{8}$Lʱ¼ÓËٶȵĴóСºÍ·½Ïò£®
£¨2£©°ôÔÚÔ˶¯¹ý³ÌÖлñµÃµÄ×î´ó¶¯ÄÜ£®
£¨3£©°ô¾ßÓеçÊÆÄܵÄ×î´ó¿ÉÄÜÖµ£®£¨ÉèOµã´¦µçÊÆÎªÁ㣩

·ÖÎö £¨1£©°ôµÄB¶Ë½øÈëµç³¡$\frac{1}{8}$Lʱ£¬·ÖÎö°ôµÄÊÜÁ¦Çé¿ö£ºÏòÓҵĺãÁ¦$\frac{1}{4}$QE£¬Ïò×óµÄµç³¡Á¦$\frac{L}{8}•\frac{QE}{L}$£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â¼ÓËÙ¶È£»
£¨2£©°ô½øÈëµç³¡µÄ¹ý³ÌÖУ¬ºãÁ¦ÏÈ´óÓڵ糡Á¦£¬ºóºãÁ¦Ð¡Óڵ糡Á¦£¬°ôÏÈ×ö¼ÓËÙÔ˶¯ºó×ö¼õËÙÔ˶¯£¬µ±ºãÁ¦Óëµç³¡Á¦Æ½ºâʱ£¬ËÙ¶È×î´ó£¬ÓÉÆ½ºâÌõ¼þÇó³ö°ô½øÈëµç³¡µÄ¾àÀ룬Óɶ¯Äܶ¨ÀíÇó½â×î´ó¶¯ÄÜ£»
£¨3£©°ô¼õËÙµ½Áãʱ£¬°ô¿ÉÄÜÈ«²¿½øÈëµç³¡£¬Ò²¿ÉÄܲ»ÄÜÈ«²¿½øÈëµç³¡£¬·ÖÇé¿ö½øÐÐÌÖÂÛ£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó³ö°ô½øÈëµç³¡µÄ¾àÀ룬Óɵ糡Á¦×ö¹¦Çó³öµçÊÆÄܵÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£º$\frac{QE}{4}-£¨\frac{L}{8}•\frac{Q}{L}£©E=ma$
½â³ö$a=\frac{QE}{8m}$£¬·½ÏòˮƽÏòÓÒ£®
£¨2£©Éè°ô½øÈëµç³¡xʱ£¬Æä¶¯ÄÜ´ïµ½×î´ó£¬
´Ëʱ°ôËùÊܺÏÁ¦Ó¦ÎªÁ㣬¼´£º$\frac{QE}{4}=x•\frac{Q}{L}E$£¬µÃx=$\frac{1}{4}$L
¶¯Äܶ¨Àí£º$\frac{QE}{4}£¨{x}_{0}^{\;}+x£©-\frac{£¨0+\frac{QE}{4}£©}{2}x={E}_{k}^{\;}-0$
½â³ö¶¯ÄÜ×î´óÖµ${E}_{km}^{\;}=\frac{QE}{4}£¨{x}_{0}^{\;}+\frac{L}{8}£©$
£¨3£©Éè¾øÔµ°ôÇ¡ºÃÄܹ»È«²¿½øÈëµç³¡£¬
¶¯Äܶ¨Àí£º$\frac{QE}{4}£¨{x}_{0}^{\;}+L£©-\frac{Q}{2}EL=0$£¬½â³öµÃx0=L£®
´æÔÚÈýÖÖ¿ÉÄÜÐÔ£º
¿ÉÄÜ1£¬x0=Lʱ£¬µçÊÆÄÜ×î´óÖµ${E}_{m}^{\;}=\frac{1}{2}QEL$
¿ÉÄÜ2£¬x0£¼L£¬°ôÖ»Äܲ¿·Ö½øÈëµç³¡£¬Éè½øÈëµç³¡x£¬
¶¯Äܶ¨Àí£º$\frac{QE}{4}£¨{x}_{0}^{\;}+x£©-\frac{0+\frac{xQE}{L}}{2}x=0$£¬½âµÃ£º$x=\frac{{L+\sqrt{{L^2}+8L{x_0}}}}{4}$£¬
µçÊÆÄÜ×î´óÖµ${E}_{m}^{\;}=\frac{QE}{4}£¨{x}_{0}^{\;}+\frac{L+\sqrt{{L}_{\;}^{2}+8L{x}_{0}^{\;}}}{4}£©$
¿ÉÄÜ3£¬x0£¾L£¬°ôÈ«²¿½øÈëµç³¡£¬
Éè½øÈëµç³¡x¡ä£¬¶¯Äܶ¨Àí£º$\frac{QE}{4}£¨{x}_{0}^{\;}+x£©-\frac{QE}{2}L-QE£¨x¡ä-L£©=0$£¬½âµÃ£º$x¡ä=\frac{{{x_0}+2L}}{3}$£¬
µçÊÆÄÜ×î´óÖµ${E}_{m}^{\;}=\frac{QE}{4}£¨{x}_{0}^{\;}+x£©=\frac{QE}{4}\frac{4{x}_{0}^{\;}+2L}{3}$=$\frac{QE£¨2{x}_{0}^{\;}+L£©}{6}$
´ð£º£¨1£©B¶Ë½øÈëµç³¡$\frac{1}{8}$Lʱ¼ÓËٶȵĴóС$\frac{QE}{8m}$ºÍ·½ÏòˮƽÏòÓÒ£®
£¨2£©°ôÔÚÔ˶¯¹ý³ÌÖлñµÃµÄ×î´ó¶¯ÄÜ$\frac{QE}{4}£¨{x}_{0}^{\;}+\frac{L}{8}£©$£®
£¨3£©°ô¾ßÓеçÊÆÄܵÄ×î´ó¿ÉÄÜÖµ¿ÉÄÜ1£¬x0=Lʱ£¬µçÊÆÄÜ×î´óÖµ${E}_{m}^{\;}=\frac{1}{2}QEL$
¿ÉÄÜ2£¬x0£¼L£¬°ôÖ»Äܲ¿·Ö½øÈëµç³¡µçÊÆÄÜ×î´óÖµ${E}_{m}^{\;}=\frac{QE}{4}£¨{x}_{0}^{\;}+\frac{L+\sqrt{{L}_{\;}^{2}+8L{x}_{0}^{\;}}}{4}£©$
¿ÉÄÜ3£¬x0£¾L£¬°ôÈ«²¿½øÈëµç³¡µçÊÆÄÜ×î´óÖµ${E}_{m}^{\;}=\frac{QE}{4}£¨{x}_{0}^{\;}+x£©=\frac{QE}{4}\frac{4{x}_{0}^{\;}+2L}{3}$=$\frac{QE£¨2{x}_{0}^{\;}+L£©}{6}$

µãÆÀ ±¾ÌâÖÐÓÉÓÚ°ôÊܵ½µÄµç³¡Á¦Ëæx¾ùÔȱ仯£¬ÓÃÆ½¾ùÖµÇó½âµç³¡Á¦×ö¹¦£®°ôÄÜ·ñÈ«²¿½øÈëµç³¡²»Çå³þʱ£¬Òª·ÖÇé¿ö½øÐÐÌÖÂÛ£¬²»ÄÜ©½â

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø