ÌâÄ¿ÄÚÈÝ
19£®ÈçͼaËùʾ£¬ÔÈÇ¿´Å³¡´¹Ö±ÓÚxOyÆ½Ãæ£¬´Å¸ÐӦǿ¶ÈB1°´Í¼bËùʾ¹æÂɱ仯£¨´¹Ö±ÓÚÖ½ÃæÏòÍâΪÕý£©£®t=0ʱ£¬Ò»±ÈºÉΪ$\frac{q}{m}$=1¡Á105C/kgµÄ´øÕýµçÁ£×Ó´ÓÔµãÑØyÖáÕý·½ÏòÉäÈ룬ËÙ¶È´óСv=3¡Á104m/s£¬²»¼ÆÁ£×ÓÖØÁ¦£®£¨1£©Çó´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖÐÔ˶¯µÄ¹ìµÀ°ë¾¶£®
£¨2£©Çót=$\frac{¦Ð}{2}$¡Á10-4sʱ´øµçÁ£×ÓµÄ×ø±ê£®
£¨3£©±£³ÖbÖдų¡²»±ä£¬ÔÙ¼ÓÒ»´¹Ö±ÓÚxOyÆ½ÃæÏòÍâµÄºã¶¨ÔÈÇ¿´Å³¡B2£¬Æä´Å¸ÐӦǿ¶ÈΪ0.3T£¬ÔÚt=0ʱ£¬Á£×ÓÈÔÒÔÔÀ´µÄËÙ¶È´ÓÔµãÉäÈ룬ÇóÁ£×ӻص½×ø±êÔµãµÄʱ¿Ì£®
·ÖÎö £¨1£©¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦Áз½³Ì¼´¿ÉÇó³ö´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖÐÔ˶¯µÄ¹ìµÀ°ë¾¶£»
£¨2£©ÏÈÇó³ö´øµçÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄÖÜÆÚ£¬ÔÙ·Ö±ðÇó³öÔÚ0¡«$\frac{¦Ð}{4}$¡Á10-4sºÍ$\frac{¦Ð}{4}$¡Á10-4s¡«$\frac{¦Ð}{2}$¡Á10-4s¹ý³ÌÖУ¬Á£×ÓÔ˶¯Á˵ÄÖÜÆÚºÍÔ²»¡¶ÔÓ¦µÄÔ²ÐĽǣ¬»³öÁ£×ÓµÄÔ˶¯¹ì¼£Í¼£¬ÀûÓü¸ºÎ¹ØÏµÇó³ö´øµçÁ£×ÓµÄ×ø±ê£»
£¨3£©»³öÊ©¼ÓB2=0.3TµÄÔÈÇ¿´Å³¡ÓëԴų¡µþ¼Óºó¹æÂɱ仯ͼ£¬·Ö±ðÇó³öµ±nT¡Üt¡ÜnT+$\frac{T}{2}$ºÍnT+$\frac{T}{2}$¡Üt¡Ü£¨n+1£©T£¨n=0£¬1£¬2£¬¡£©Ê±Á£×ÓÔ˶¯Á˵ÄÖÜÆÚ£¬»³öÁ£×ÓÔ˶¯¹ì¼£Í¼¼´¿ÉÇó³öÁ£×ӻص½×ø±êÔµãµÄʱ¿Ì£®
½â´ð ½â£º£¨1£©´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖÐÔ˶¯£¬ÂåÂØ×ÈÁ¦ÌṩÏòÐÄÁ¦£¬
ÔòÓÐqvB1=m$\frac{{v}^{2}}{r}$£¬
´úÈëÊý¾Ý½âµÃ£ºr=$\frac{mv}{q{B}_{1}}$=$\frac{3¡Á1{0}^{4}}{1¡Á1{0}^{5}¡Á0.5}$m=0.6m£®
£¨2£©´øµçÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄÖÜÆÚ£º
T0=$\frac{2¦Ðm}{{B}_{1}q}$=$\frac{2¦Ð}{5}$¡Á10-4s£¬
ÔÚ0¡«$\frac{¦Ð}{4}$¡Á10-4s¹ý³ÌÖУ¬Á£×ÓÔ˶¯ÁË$\frac{5{T}_{0}}{8}$£¬
Ô²»¡¶ÔÓ¦µÄÔ²ÐĽǣº¦È1=$\frac{5¦Ð}{4}$£¬
ÔÚ$\frac{¦Ð}{4}$¡Á10-4s¡«$\frac{¦Ð}{2}$¡Á10-4s¹ý³ÌÖУ¬Á£×ÓÓÖÔ˶¯ÁË$\frac{5{T}_{0}}{8}$£¬
Ô²»¡¶ÔÓ¦µÄÔ²ÐĽǣº¦È2=$\frac{5¦Ð}{4}$£¬![]()
¹ì¼£ÈçͼaËùʾ£¬¸ù¾Ý¼¸ºÎ¹ØÏµ¿ÉÖª£¬
ºá×ø±ê£ºx=2r+2rsin$\frac{¦Ð}{4}$=$\frac{3}{5}$£¨2+$\sqrt{2}$£©m£¬
×Ý×ø±ê£ºy=-2rcos$\frac{¦Ð}{4}$=-$\frac{3\sqrt{2}}{5}$m£¬
¹Ê´øµçÁ£×ÓµÄ×ø±êΪ[$\frac{3}{5}$£¨2+$\sqrt{2}$£©m£¬-$\frac{3\sqrt{2}}{5}$m]£®
£¨3£©Ê©¼ÓB2=0.3TµÄÔÈÇ¿´Å³¡ÓëԴų¡µþ¼Óºó£¬ÈçͼbËùʾ£¬![]()
¢Ùµ±nT¡Üt¡ÜnT+$\frac{T}{2}$£¨n=0£¬1£¬2£¬¡£©Ê±£¬
T1=$\frac{2¦Ðm}{q£¨{B}_{1}+{B}_{2}£©}$=$\frac{¦Ð}{4}$¡Á10-4s£¬
¢Úµ±nT+$\frac{T}{2}$¡Üt¡Ü£¨n+1£©T£¨n=0£¬1£¬2£¬¡£©Ê±£¬
T2=$\frac{2¦Ðm}{q£¨{B}_{1}-{B}_{2}£©}$=¦Ð¡Á10-4s£¬
Á£×ÓÔ˶¯¹ì¼£ÈçͼcËùʾ£¬![]()
ÔòÁ£×ӻص½ÔµãµÄʱ¿ÌΪ£º
t1=£¨$\frac{¦Ð}{4}$+2n¦Ð£©¡Á10-4s£¬
t2=2£¨n+1£©¦Ð¡Á10-4s £¨n=0£¬1£¬2£¬¡£©£®
´ð£º£¨1£©Çó´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖÐÔ˶¯µÄ¹ìµÀ°ë¾¶Îª0.6m£»
£¨2£©t=$\frac{¦Ð}{2}$¡Á10-4sʱ´øµçÁ£×ÓµÄ×ø±êΪ[$\frac{3}{5}$£¨2+$\sqrt{2}$£©m£¬-$\frac{3\sqrt{2}}{5}$m]£»
£¨3£©Á£×ӻص½×ø±êÔµãµÄʱ¿ÌΪt1=£¨$\frac{¦Ð}{4}$+2n¦Ð£©¡Á10-4s£¬t2=2£¨n+1£©¦Ð¡Á10-4s £¨n=0£¬1£¬2£¬¡£©£®
µãÆÀ ´ËÌâÊÇ´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖеÄÔ˶¯ÎÊÌ⣬½âÌâʱҪÈÏÕæ·ÖÎöÁ£×ÓµÄÔ˶¯¹ì¼££¬»³öÁ£×ÓµÄÔ˶¯¹ì¼£Í¼²¢½áºÏ¼¸ºÎ֪ʶ½øÐÐÇó½â£¬Í¬Ê±Òª×¢ÒâÁ£×ÓÔ˶¯µÄÖÜÆÚÐÔ£¬¹ý³Ì±È½Ï¸´ÔÓ£¬ÒâÔÚ¿¼²éѧÉú×ۺϷÖÎöÎÊÌâµÄÄÜÁ¦£®
| A£® | d2=d1 | B£® | d2=$\frac{{d}_{1}}{4}$ | C£® | d2=$\frac{{d}_{1}}{8}$ | D£® | d2=$\frac{{d}_{1}}{16}$ |
| A£® | µ¼Ìå°ô¿ªÊ¼Ô˶¯µÄ³õʼʱ¿ÌÊܵ½µÄ°²ÅàÁ¦Ïò×ó | |
| B£® | µ¼Ìå°ô¿ªÊ¼Ô˶¯µÄ³õʼʱ¿Ìµ¼Ìå°ôÁ½¶ËµÄµçѹU=$\frac{1}{2}$BLv0 | |
| C£® | µ¼Ìå°ô¿ªÊ¼Ô˶¯ºóËٶȵÚÒ»´ÎΪÁãʱ£¬ÏµÍ³µÄµ¯ÐÔÊÆÄÜEp=$\frac{1}{2}$m$v_0^2$ | |
| D£® | ´Óµ¼Ìå°ô¿ªÊ¼Ô˶¯µ½×îÖÕλÖõĹý³ÌÖУ¬µç×èRÉϲúÉúµÄ½¹¶úÈÈQ=$\frac{1}{4}$m$v_0^2$ |
| A£® | Õâ¸öµçÈÝÆ÷µÄµçÈÝΪ10-5 F | |
| B£® | Õâ¸öµçÈÝÆ÷¼ÓÉÏ50 VµçÊÆ²îʱ£¬µçÈݲÅÊÇ10 ¦ÌF | |
| C£® | Õâ¸öµçÈÝÆ÷ûÓеçÊÆ²îʱ£¬µçÈÝΪ0 | |
| D£® | Õâ¸öµçÈÝÆ÷¼ÓµÄµçÊÆ²î²»ÄܵÍÓÚ50 V |