题目内容

10.如图所示,相距2L的AB、CD两直线间的区域存在着两个大小不同、方向相反的有界匀强电场,其中PT上方的电场E1的场强方向竖直向下,PT下方的电场E0的场强方向竖直向上,在电场左边界AB上宽为L的PQ区域内,连续分布着电量为+q、质量为m的粒子.从某时刻起由Q到P点间的带电粒子,依次以相同的初速度v0沿水平方向垂直射入匀强电场E0中,若从Q点射入的粒子,通过PT上的某点R进入匀强电场E1后从CD边上的M点水平射出,其轨迹如图,若MT两点的距离为$\frac{L}{2}$.不计粒子的重力及它们间的相互作用.试求:
(1)电场强度E0与E1
(2)在PQ间还有许多水平射入电场的粒子通过电场后也能垂直CD边水平射出,这些入射点到P点的距离有什么规律?

分析 (1)粒子在两电场中做类平抛运动,由图可得出粒子在两电场中的运动情况;分别沿电场方向和垂直电场方向列出物理规律,联立可解得电场强度的大小;
(2)粒子进入电场做类平抛运动,根据运动的合成与分解,结合运动学公式分析答题.

解答 解:(1)设粒子经PT直线上的点R由E0电场进入E1电场,由Q到R及R到M点的时间分别为t1与t2,到达R时竖直速度为vy,则:
由牛顿第二定律得:F=qE=ma,
由匀变速直线运动的位移公式:s=$\frac{1}{2}$at2与匀变速直线运动的速度公式:v=at可得:
解得:L=$\frac{1}{2}$a1t12=$\frac{1}{2}$×$\frac{q{E}_{0}}{m}$×t12…①
而 $\frac{L}{2}$=$\frac{1}{2}$a2t22=$\frac{1}{2}$$\frac{q{E}_{1}}{m}$t22…②
速度关系:vy=$\frac{q{E}_{0}}{m}$t1=$\frac{q{E}_{0}}{m}$t2…③
v0(t1+t2)=2L…④
上述四式联立解得:E1=2E0,E0=$\frac{9m{v}_{0}^{2}}{8qL}$,E1=$\frac{9m{v}_{0}^{2}}{4qL}$;
(2)由E1=2E0及③式可得:t1=2t2
因沿PT方向粒子做匀速运动,故P、R两点间的距离是R、T两点间距离的两倍.即粒子在E0电场做类平抛运动在PT方向的位移是在E1电场中的两倍.
设PQ间到P点距离为△y的F处射出的粒子通过电场后也沿水平方向,若粒子第一次达PT直线用时△t,水平位移为△x,则△x=v0△t
△y=$\frac{1}{2}$$\frac{q{E}_{0}}{m}$(△t)2
粒子在电场E1中可能做类平抛运动后,垂直CD边射出电场,也可能做类斜抛运动后返回E0电场,在E0电场中做类平抛运动垂直CD水平射出,或在E0电场中做类斜抛运动再返回E1电场,若粒子从E1电场垂直CD射出电场,则有:
(2n+1)△x+$\frac{△x}{2}$=2L (n=0、1、2、3、…)
解之得:
△y=$\frac{1}{2}$$\frac{q{E}_{0}}{m}$($\frac{△x}{{v}_{0}}$)2=$\frac{1}{2}$$\frac{q{E}_{0}}{m}$[$\frac{4L}{3(2n+1){v}_{0}}$]2=$\frac{L}{(2n+1)^{2}}$ (n=0、1、2、3、…)
若粒子从E0电场垂直CD射出电场,则有:
3k△x=2L(k=1、2、3、…)
△y=$\frac{1}{2}$$\frac{q{E}_{0}}{m}$($\frac{△x}{{v}_{0}}$)2=$\frac{1}{2}$$\frac{q{E}_{0}}{m}$($\frac{2L}{3k{v}_{0}}$)2=$\frac{L}{4{k}^{2}}$(k=1、2、3、…)
即PF间的距离为:$\frac{L}{(2n+1)^{2}}$与$\frac{L}{4{k}^{2}}$ 其中(n=0、1、2、3、…,k=1、2、3、…)
或 2n$\frac{3△x}{2}$=2L (n=1、2、3、…)
解之得:△y=$\frac{1}{2}$$\frac{q{E}_{0}}{m}$($\frac{△x}{{v}_{0}}$)2=$\frac{L}{{n}^{2}}$(n=1、2、3、…)
则PF间距为$\frac{L}{{n}^{2}}$(n=1、2、3、…)
答:(1)电场强度E0与E1分别为:$\frac{9m{v}_{0}^{2}}{8qL}$、$\frac{9m{v}_{0}^{2}}{4qL}$;
(2)在PQ间还有许多水平射入电场的粒子通过电场后也能垂直CD边水平射出,这些入射点到P点的距离为:$\frac{L}{{n}^{2}}$(n=1、2、3、…).

点评 本题考查了带电粒子在电场中的运动,带电粒子在电场中做类平抛运动,分析清楚粒子运动过程是解题的前提与关键,应用牛顿第二定律与运动学公式可以解题,由于粒子运动过程复杂,本题难度较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网