ÌâÄ¿ÄÚÈÝ
1£®£¨1£©ÇóÔÂÇòµÄµÚÒ»ÓîÖæËÙ¶È£¨»·ÈÆËÙ¶È£©£»
£¨2£©µ±¡°æÏ¶ðÈýºÅ¡±ÔÚ»·Ô¶Î×öÔÈËÙÔ²ÖÜÔ˶¯Ê±£¬ÔËÐйìµÀ¾àÔÂÇò±íÃæµÄ¸ß¶ÈΪH£¬Çó¡°æÏ¶ðÈýºÅ¡±µÄÔËÐÐÖÜÆÚ£®
·ÖÎö £¨1£©ÓÉÖØÁ¦ÌṩÏòÐÄÁ¦£º$G\frac{Mm}{R^2}=m{g_ÔÂ}$£¬¿ÉÇóµÃµÚÒ»ÓîÖæËÙ¶È£®
£¨2£©¡°æÏ¶ðÈýºÅ¡±ÓëÔÂÇòµÄÍòÓÐÒýÁ¦³äµ±Ô²ÖÜÔ˶¯µÄÏòÐÄÁ¦£º$G\frac{Mm}{{{{£¨R+H£©}^2}}}=m\frac{{4{¦Ð^2}£¨R+H£©}}{T^2}$ÇóµÃÖÜÆÚ£®
½â´ð ½â£º£¨1£©ÖÊÁ¿ÎªmµÄÎïÌåÔÚÔÂÇò±íÃæÔËÐÐʱ£¬×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ$G\frac{Mm}{R^2}=m\frac{v^2}{R}$¢Ù
ÔÚÔÂÇò±íÃæ$G\frac{Mm}{R^2}=m{g_ÔÂ}$¢Ú
ÓÉ¢Ù¢ÚʽµÃ$v=\sqrt{{g_ÔÂ}R}$
£¨2£©¡°æÏ¶ðÈýºÅ¡±ÓëÔÂÇòµÄÍòÓÐÒýÁ¦³äµ±Ô²ÖÜÔ˶¯µÄÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ$G\frac{Mm}{{{{£¨R+H£©}^2}}}=m\frac{{4{¦Ð^2}£¨R+H£©}}{T^2}$¢Û
ÓÉ¢Ú¢ÛʽµÃ$T=\frac{2¦Ð£¨R+H£©}{R}\sqrt{\frac{R+H}{g_ÔÂ}}$
´ð£º£¨1£©ÔÂÇòµÄµÚÒ»ÓîÖæËÙ¶ÈΪ$\sqrt{{g}_{ÔÂ}R}$£»
£¨2£©¡°æÏ¶ðÈýºÅ¡±µÄÔËÐÐÖÜÆÚΪ$T=\frac{2¦Ð£¨R+H£©}{R}\sqrt{\frac{R+H}{g_ÔÂ}}$
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÒªÖªµÀ¡°æÏ¶ðÈýºÅ¡±ÈÆÔÂÇò×öÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦ÓÉÍòÓÐÒýÁ¦Ìṩ£¬²¢ÇÒÒªÄܹ»¸ù¾ÝÌâÄ¿µÄÒªÇóÑ¡ÔñÇ¡µ±µÄÏòÐÄÁ¦µÄ±í´ïʽ£®
| A£® | ·¢ÏÖ¼ÒÖÐÓкܴóµÄÃºÆøÎ¶£¬Á¢¼´¿ª´°£¬²»Òª´ò¿ªµçÆ÷¿ª¹Ø | |
| B£® | °Ñ²åÍ·²åÈë²å×ùºó£¬Ï°¹ßÔÙ°´Ò»Ï | |
| C£® | Ç£¶¯µ¼Ï߰ѵçÆ÷²åÍ·´Ó²å×ùÖÐÀ³ö | |
| D£® | ¾³£ÓÃʪÊÖ½Ó´¥µçÆ÷¿ª¹Ø |
| A£® | ${\;}_{92}^{238}$U¡ú${\;}_{90}^{234}$Th+${\;}_{2}^{4}$He | |
| B£® | ${\;}_{92}^{235}$U+${\;}_{0}^{1}$n¡ú${\;}_{56}^{139}$Ba+${\;}_{36}^{94}$Kr+3${\;}_{0}^{1}$n | |
| C£® | ${\;}_{15}^{30}$P¡ú${\;}_{14}^{30}$Si+${\;}_{1}^{0}$e | |
| D£® | ${\;}_{7}^{14}$N+${\;}_{2}^{4}$He¡ú${\;}_{8}^{17}$O+${\;}_{1}^{1}$H |
| A£® | B¡¢CÁ½µã³¡Ç¿´óСºÍ·½Ïò¶¼Ïàͬ£¬A¡¢DÁ½µã³¡Ç¿´óСºÍ·½ÏòÒ²Ïàͬ | |
| B£® | ÒÆ¶¯ÏàͬµÄÕýµçºÉ´ÓBµ½Eµç³¡Á¦×öµÄ¹¦±ÈOµ½Cµç³¡Á¦×öµÄ¹¦Òª¶à | |
| C£® | E¡¢O¡¢FÈýµã±È½Ï£¬Oµã³¡Ç¿×îÇ¿£»B¡¢O¡¢CÈýµã±È½Ï£¬Oµã³¡Ç¿×îÈõ | |
| D£® | ½«ÏàͬµÄµçºÉ·ÅÔÚOµãºÍEµãµçÊÆÄÜÒ»¶¨ÏàµÈ |
| A£® | ÎÞÂÛÑØÊ²Ã´Ð±ÃæÀ£¬¿Ë·þĦ²ÁÁ¦×öµÄ¹¦Ïàͬ | |
| B£® | ÎÞÂÛÑØÊ²Ã´Ð±ÃæÀ£¬ºÏÍâÁ¦×öµÄ¹¦¾ùÏàͬ | |
| C£® | ÑØÇã½Ç½Ï´óµÄÐ±ÃæÀ£¬¿Ë·þÖØÁ¦×öµÄ¹¦½Ï¶à | |
| D£® | ÑØÇã½Ç½ÏСµÄÐ±ÃæÀ£¬ºÏÍâÁ¦×öµÄ¹¦½Ï¶à |
| A£® | Ìå»ý¼õС£¬ÄÚÄܼõС | B£® | Ìå»ýÔö´ó£¬ÄÚÄÜÔö´ó | ||
| C£® | Ìå»ý¼õС£¬ÏòÍâ½ç·ÅÈÈ | D£® | Ìå»ýÔö´ó£¬´ÓÍâ½çÎüÈÈ |