ÌâÄ¿ÄÚÈÝ
20£®£¨1£©ÇóСÎï¿éA×öÔÈËÙÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦£¿
£¨2£©µ±Ð¡ÇòËÙ¶È·½ÏòƽÐÐÓÚ²£Á§°åad±ßʱ£¬¼ô¶ÏϸÏߣ¬ÔòСÇòÂäµØÇ°Ë²¼äµÄËٶȶà´ó£¿
£¨3£©ÔÚ£¨2£©µÄÇé¿öÏ£¬ÈôСÇòºÍÎïÌåÂ䵨ºó¾ù²»ÔÙÔ˶¯£¬ÔòÁ½ÕßÂ䵨µã¼äµÄ¾àÀëΪ¶àÉÙ£¿
·ÖÎö £¨1£©¸ù¾ÝÏòÐÄÁ¦¹«Ê½Çó½âÏòÐÄÁ¦£»
£¨2£©¸ù¾Ý»úеÄÜÊØºãÇóСÇòÂäµØÊ±µÄËÙ¶È´óС£»
£¨3£©AÏÈ×öÒ»¶ÎÔÈËÙÖ±ÏßÔ˶¯£¬ÍÑÀë²£Á§°åºó×öƽÅ×Ô˶¯£¬B×ö×ÔÓÉÂäÌ壬½áºÏ¼¸ºÎ֪ʶÇóÁ½ÕßµÄÂ䵨¾àÀ룮
½â´ð ½â£º£¨1£©Ð¡Îï¿éA×öÔÈËÙÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦Îª£º
F=${m}_{A}\frac{{{v}_{A}}^{2}}{r}=2¡Á\frac{4}{1}=8N$
£¨2£©AÏÂÂä¹ý³Ì£¬¸ù¾Ý»úеÄÜÊØºã¶¨ÂÉ£º
$\frac{1}{2}m{{v}_{A}}^{2}+{m}_{A}gH=\frac{1}{2}{m}_{A}v{¡ä}^{2}$£¬
½âµÃ£º$v¡ä=\sqrt{{v}^{2}+2gH}=\sqrt{4+2¡Á10¡Á5}=\sqrt{104}m/s$
£¨3£©AÍÑÀë²£Á§°åºó×öƽÅ×Ô˶¯£¬ÊúÖ±·½Ïò×ÔÓÉÂäÌ壺
$H=\frac{1}{2}g{t}^{2}$£¬½âµÃ£ºt=1s
ÔòƽÅ×Ë®Æ½Î»ÒÆ£º
x=v¡ät=$\sqrt{104}m$£¬
¶þÕßÂ䵨µÄ¾àÀ룺
s=$\sqrt{{x}^{2}+{l}^{2}}=\sqrt{104+16}=2\sqrt{30}m$£®
´ð£º£¨1£©Ð¡Îï¿éA×öÔÈËÙÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦Îª8N£»
£¨2£©µ±Ð¡ÇòËÙ¶È·½ÏòƽÐÐÓÚ²£Á§°åad±ßʱ£¬¼ô¶ÏϸÏߣ¬ÔòСÇòÂäµØÇ°Ë²¼äµÄËÙ¶ÈΪ$\sqrt{104}m/s$£»
£¨3£©ÔÚ£¨2£©µÄÇé¿öÏ£¬ÈôСÇòºÍÎïÌåÂ䵨ºó¾ù²»ÔÙÔ˶¯£¬ÔòÁ½ÕßÂ䵨µã¼äµÄ¾àÀëΪ$2\sqrt{30}m/s$£®
µãÆÀ ±¾ÌâÊôÓÚÆ½Å×Ô˶¯ºÍÔ²ÖÜÔ˶¯µÄ×ÛºÏÓ¦ÓÃÌâÐÍ£¬ÇóµÚÈýÎÊʱעÒâÁ½ÕߵľàÀëÊÇÒÔÉþ³¤ºÍƽÅ×Ô˶¯Ë®Æ½Î»ÒÆÎªÁڱߵÄб±ß³¤£®
| A£® | ºÏÔ˶¯µÄʱ¼äµÈÓÚÁ½¸ö·ÖÔ˶¯µÄʱ¼äÖ®ºÍ | |
| B£® | ÎïÌåµÄÁ½¸ö·ÖÔ˶¯ÈôÊÇÖ±ÏßÔ˶¯£¬ÔòËüµÄºÏÔ˶¯Ò»¶¨ÊÇÖ±ÏßÔ˶¯ | |
| C£® | ËÙ¶È¡¢¼ÓËٶȺÍÎ»ÒÆµÄºÏ³É¶¼×ñÑÆ½ÐÐËıßÐζ¨Ôò | |
| D£® | ÇúÏßÔ˶¯µÄ¼ÓËÙ¶È·½Ïò²»¿ÉÄÜÓëËÙ¶ÈÔÚͬһֱÏßÉÏ |
| A£® | µçѹ±íVµÄʾÊýΪ22V | |
| B£® | µ±´«¸ÐÆ÷R2ËùÔÚ´¦³öÏÖ»ð¾¯Ê±£¬µçѹ±íVµÄʾÊýÔö´ó | |
| C£® | µ±´«¸ÐÆ÷R2ËùÔÚ´¦³öÏÖ»ð¾¯Ê±£¬µçÁ÷±íAµÄʾÊýÔö´ó | |
| D£® | µ±´«¸ÐÆ÷R2ËùÔÚ´¦³öÏÖ»ð¾¯Ê±£¬µç×èR1µÄ¹¦Âʱä´ó |
| A£® | W1=0 W2=0 | B£® | W1¡Ù0 W2=0 | C£® | W1=0 W2¡Ù0 | D£® | W1¡Ù0 W2¡Ù0 |