题目内容

4.地球的两颗人造卫星质量之比是1:2,轨道半径之比R1:R2=1:2,则线速度之比v1:v2=$\sqrt{2}$:1;向心力之比F1:F2=2:1.

分析 人造地球卫星的向心力由万有引力提供,则由公式可得出各量的表达式,则可得出各量间的比值.

解答 解:卫星围绕地球做匀速圆周运动,万有引力提供圆周运动向心力有:
F=$\frac{GMm}{{r}^{2}}$=m$\frac{{v}^{2}}{r}$
v=$\sqrt{\frac{GM}{r}}$,
轨道半径之比R1:R2=1:2,
则线速度之比v1:v2=$\sqrt{2}$:1,
F=$\frac{GMm}{{r}^{2}}$,质量之比是1:2,轨道半径之比为:R1:R2=1:2,
向心力之比为:F1:F2=2:1,
故答案为:$\sqrt{2}$:1,2:1

点评 解决本题的关键知道两人造卫星靠万有引力提供圆周运动的向心力,掌握线速度、角速度、加速度、周期与轨道半径的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网