ÌâÄ¿ÄÚÈÝ
12£®£¨1£©´øµçÁ£×Ó´ÓB°åС¿×Éä³öʱµÄËÙ¶È´óСv0£»
£¨2£©´øµçÁ£×Ó´ÓC¡¢D°åÉä³öʱµÄËÙ¶Èv´óСºÍ·½Ïò£»
£¨3£©Óûʹ´øµçÁ£×Ó²»ÔÙ·µ»ØÖÁC¡¢D°å¼ä£¬ÓÒ²à´Å³¡µÄ´Å¸ÐӦǿ¶È´óСӦ¸ÃÂú×ãʲôÌõ¼þ£¿
·ÖÎö £¨1£©¸ù¾Ý¶¯Äܶ¨ÀíÇóµÃ´øµçÁ£×Ó´ÓB°åС¿×Éä³öʱµÄËÙ¶È´óС£»
£¨2£©Á£×Ó½øÈëCD°å¼äºó£¬Ôڵ糡Á¦×÷ÓÃÏÂ×öÀàÆ½Å×Ô˶¯£¬¸ù¾ÝÀàÆ½Å×Ô˶¯¹æÂÉÇóµÃÁ£×Ó´ÓCD°åÉä³öʱµÄËÙ¶È´óСºÍ·½Ïò£»
£¨3£©¸ù¾Ý¼¸ºÎ¹ØÏµÇóµÃÁ£×Ó²»»Øµ½CD°å¼äµÄ°ë¾¶´óС¹ØÏµ£¬Óɴ˸ù¾ÝÂåÂ××ÈÁ¦ÌṩԲÖÜÔ˶¯ÏòÐÄÁ¦·ÖÎöÇó½â£®
½â´ð ½â£º£¨1£©´øµçÁ£×Óͨ¹ýAB°å¼äʱÓɶ¯Äܶ¨ÀíµÃ
$qU=\frac{1}{2}mv_0^2$
½âµÃ£º${v_0}=\sqrt{\frac{2qU}{m}}$
£¨2£©´øµçÁ£×ÓÔÚCD°å¼ä×öÀàÆ½Å×Ô˶¯£¬Ñص¼Ìå°å·½Ïò×öÔÈËÙÔ˶¯£¬´¹Ö±µ¼Ìå°å·½Ïò×ö³õËÙΪÁãµÄÔȼÓËÙÔ˶¯£¬¼ÓËÙ¶ÈÉèΪa£¬
Éä³öCD°åʱËÙ¶È·½ÏòÓëˮƽ¼ä¼Ð½ÇÉèΪ¦È£®
ˮƽ·½Ïò£º2d=v0t
ÊúÖ±·½Ïò¼ÓËÙ¶È£º$a=\frac{qU}{md}$
Ôò$tan¦È=\frac{at}{v_0}$£®
$cos¦È=\frac{v_0}{v}$
½âµÃ£º¦È=45¡ã
$v=2\sqrt{\frac{qU}{m}}$
£¨3£©´øµçÁ£×ÓÔÚCDµç³¡ÖÐµÄÆ«×ªÎ»ÒÆ£º$y=\frac{1}{2}•\frac{qU}{md}•{t}^{2}$=d![]()
ÓÉ´Ë¿ÉÖª´øµçÁ£×Ó´ÓCDµ¼Ìå°åµÄÓÒϽÇÉä³öÔÙ½øÈëÔÈÇ¿´Å³¡ÖУ¬ÓûʹÁ£×Ó²»ÔÙ·µ»ØCD°å¼ä£¬´øµçÁ£×Ó×öÔ²ÖÜÔ˶¯ÖÁCD°åÓÒÉϽÇʱΪÁÙ½ç״̬£¬ÉèÔ²ÖÜÔ˶¯µÄ°ë¾¶ÎªR£¬´Å¸ÐӦǿ¶ÈΪB£®
Óɼ¸ºÎ֪ʶµÃd2=R2+R2
ÂåÂ××ÈÁ¦ÌṩԲÖÜÔ˶¯ÏòÐÄÁ¦ÓУº$qvB=m\frac{v^2}{R}$
ÊǵÃ$B=\frac{{2\sqrt{2}}}{d}\sqrt{\frac{mU}{q}}$
ÔòÂú×ãÌõ¼þµÄ´Å¸ÐӦǿ¶ÈÂú×㣺$B£¼\frac{{2\sqrt{2}}}{d}\sqrt{\frac{mU}{q}}$
´ð£º£¨1£©´øµçÁ£×Ó´ÓB°åС¿×Éä³öʱµÄËÙ¶È´óСv0Ϊ$\sqrt{\frac{2qU}{m}}$£»
£¨2£©´øµçÁ£×Ó´ÓC¡¢D°åÉä³öʱµÄËÙ¶Èv´óСΪ$2\sqrt{\frac{qU}{m}}$£¬·½ÏòÓëˮƽ·½Ïò³É45¶È½Ç£»
£¨3£©Óûʹ´øµçÁ£×Ó²»ÔÙ·µ»ØÖÁC¡¢D°å¼ä£¬ÓÒ²à´Å³¡µÄ´Å¸ÐӦǿ¶È´óСӦ¸ÃÂú×ã$B£¼\frac{{2\sqrt{2}}}{d}\sqrt{\frac{mU}{q}}$£®
µãÆÀ ±¾Ì⿼²éÁË´øµçÁ£×ÓÔÚµç´Å³¡ÖеÄÔ˶¯£¬¹ý³Ì¸´ÔÓ£¬ÊÇÒ»µÀÄÑÌ⣬·ÖÎöÇå³þÁ£×ÓµÄÔ˶¯¹ý³Ì£¬×÷³öÁ£×ÓµÄÔ˶¯¹ì¼££¬ÊÇÕýÈ·½âÌâµÄ¹Ø¼ü£®
| A£® | ¹ìµÀ°ë¾¶Ö®±ÈΪ1£º4 | B£® | ÏòÐÄÁ¦Ö®±ÈΪ4£º1 | ||
| C£® | ÖÜÆÚÖ®±ÈΪ1£º8 | D£® | ±ä¹ìµÀºóµÄ»úеÄܼõÉÙ |
| A£® | $\sqrt{\frac{32FL}{25m}}$ | B£® | $\sqrt{\frac{96FL}{25m}}$ | C£® | $\sqrt{\frac{96FL}{125m}}$ | D£® | $\sqrt{\frac{32FL}{125m}}$ |
| A£® | $\frac{{a}_{A}}{{a}_{B}}$=£¨$\frac{R-d}{R+d}$£©2 | B£® | $\frac{{v}_{A}}{{v}_{B}}$=$\sqrt{\frac{R-d}{R+d}}$ | ||
| C£® | $\frac{{¦Ø}_{A}}{{¦Ø}_{B}}$=$\sqrt{\frac{£¨R-d£©^{3}}{£¨R+d£©^{3}}}$ | D£® | $\frac{{T}_{A}}{{T}_{B}}$=$\sqrt{\frac{£¨R+d£©^{3}}{{R}^{3}}}$ |