ÌâÄ¿ÄÚÈÝ
3£®Èçͼ¼×Ëùʾ£¬Á½Æ½ÐнðÇü°å¼ä½ÓÓÐÈçͼÒÒËùʾµÄËæÊ±¼ät±ä»¯µÄµçѹUÁ½°å¼äµç³¡¿É¿´×÷ÊǾùÔȵģ¬ÇÒÁ½¼«°åÍâÎ޵糡£¬¼«°å³¤L=0.2m£¬°å¼ä¾àÀëd=0.2m£¬ÔÚ½ðÊô°åÓÒ²àÓÐÒ»±ß½çΪMN µÄÇøÓò×ã¹»´óµÄÔÈÇ¿´Å³¡£¬MNÓëÁ½°åÖÐÏß00'´¹Ö±£¬´Å¸ÐӦǿ¶ÈB=5¡Á10-3T£¬·½Ïò´¹Ö±Ö½ÃæÏòÀÏÖÓдøÕýµçµÄÁ£×ÓÁ÷ÑØÁ½°åÖÐÏßÁ¬ÐøÉäÈëµç³¡ÖУ¬ÒÑ֪ÿ¸öÁ£×ÓµÄËÙ¶Èv0=105m/s£¬±ÈºÉq/m=108 C/kg£¬ÖØÁ¦ºöÂÔ²»¼Æ£¬ÔÚÿ¸öÁ£×Óͨ¹ýµç³¡ÇøÓòµÄ¼«¶Ìʱ¼äÄÚ£¬µç³¡¿ÉÊÓ×÷ÊǺ㶨²»±äµÄ£®£¨1£©ÊÔÇó´øµçÁ£×ÓÉä³öµç³¡Ê±µÄ×î´óËÙ¶È£»
£¨2£©´Óµç³¡Éä³öµÄ´øµçÁ£×Ó£¬½øÈë´Å³¡Ô˶¯Ò»¶Îʱ¼äºóÓÖÉä³ö´Å³¡£®ÇóÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄ×ʱ¼äºÍ×î¶Ìʱ¼ä£»
£¨3£©ÊÔÇó´Óµç³¡Éä³öµÄ´øµçÁ£×Ó½øÈë´Å³¡ºó´Ó´Å³¡×ó±ß½çÉä³öÇøÓòµÄ¿í¶È£®
·ÖÎö ´øµçÁ£×ÓÔÚ¸´ºÏ³¡ÖеÄÔ˶¯£¬Éæ¼°µ½ÀàÆ½Åס¢Ô²ÖÜÔ˶¯¡¢ÔȱäËٵȹý³Ì£¬Ó¦Óõ½µÄ¹æÂÉÓÐÁ¦Ñ§Ö÷¸É֪ʶ¡¢µç´Åѧ»ù±¾¹«Ê½µÈ£®¶Ô´ËÌ⣺
£¨1£©Á£×Ó´¹Ö±Óڵ糡½øÈëµç³¡×öÀàÆ½Å×Ô˶¯£¬¼´Â·¾¶ÎªÅ×ÎïÏߣ¬ÒªÇó×î´óËÙ¶È£¬¸ÕÒªÇóµç³¡Á¦×ö¹¦×î¶à£¬¼´´ÓM»òN±ßÔµÉä³öµÄÁ£×Ó£¬ÕâÑùÓɶ¯Äܶ¨ÂÉ¿ÉÒÔÇó³ö£®
£¨2£©Á£×ÓÁ¬ÐøÉäÈëµç³¡Ôڱ仯µÄµç³¡ÖÐÔ˶¯£¬Ò²¿ÉÄÜÉÏÆ«£¬Ò²¿ÉÄÜÏÂÆ«£®¸ù¾Ý×óÊÖ¶¨Ôò£¬½«ÄæÊ±Õëת¶¯£¬ÏÔÈ»ÓëMNÏòÉϼнÇÔ½´ó£¬Ô²ÖÜÔ˶¯µÄ»¡³¤Ô½´ó£¬Ê±¼äÔ½³¤£¬Ö»ÄÜÊÇ´ÓϱßÔµ´©³öµÄÁ£×Ó»¡³¤×î´ó£¬´ÓÉϱßÔµ´©³öµÄÁ£×Ó»¡³¤×î¶Ì£®Óë´Å³¡±ßÔµ³É45¡ã½Ç½øÈë´Å³¡µÄÁ£×Ó½«×ª¹ý270¡ã»ò45¡ã£®
£¨3£©ÓÉÓڴų¡ÇøÓò×ã¹»¿í£¬Á£×ÓÔڴų¡ÖÐ×ö²¿·ÖÔ²ÖÜÔ˶¯ºóÔÙ´Ó×ó±ß½ç´©³ö£¬¸ù¾Ý¼¸ºÎ¹ØÏµ£¬ÒÔ¼°°ë¾¶¹«Ê½¿ÉÒÔÇó³ö¿í¶È£®
½â´ð ½â£º£¨1£©Æ«×ªµçѹÓÉ0µ½200VµÄ±ä»¯ÖУ¬Á£×ÓÁ÷¿ÉÄܶ¼ÄÜÉä³öµç³¡£¬Ò²¿ÉÄÜÖ»Óв¿·ÖÁ£×ÓÄÜÉä³öµç³¡£®ÉèÆ«×ªµÄµçѹΪU0ʱ£¬Á£×Ó¸ÕºÃÄܾ¹ý¼«°åµÄÓÒ±ßÔµÉä³ö£®
$\frac{1}{2}d=\frac{1}{2}a{t}^{2}$ ¢Ù
¶øÁ£×ӵļÓËÙ¶È£º
$a=\frac{q{U}_{1}}{dm}$ ¢Ú
Á£×ÓÔÚÆ«×ªµç³¡ÖеÄʱ¼ä£º
$t=\frac{l}{{v}_{0}}$ ¢Û
ÁªÁ¢ÒÔÉÏÈýʽ½âµÃ£ºµÃU1=100V£®
´Ó¶øÖªµÀƫתµçѹΪ100Vʱ£¬Á£×ÓÇ¡ºÃÄÜÉä³öµç³¡£¬ÇÒËÙ¶È×î´ó£®
¸ù¾Ý¶¯Äܶ¨ÀíµÃ£º
$\frac{1}{2}m{{v}_{1}}^{2}-\frac{1}{2}m{{v}_{0}}^{2}=q{U}_{1}$ ¢Ü
´úÈëÊý¾Ý½âµÃ£º
${v}_{1}=\sqrt{2}¡Á1{0}^{5}m/s=1.41¡Á1{0}^{5}m/s$£®
·½Ïò£ºÐ±ÏòÓÒÉÏ·½»òбÏòÓÒÏ·½£¬Óë³õËÙ¶È·½Ïò³É45¡ã½Ç£®
£¨2£©ÓÉ£¨1£©Öª£¬ÈôÁ£×ÓÉä³ö´Å³¡µÄÊúÖ±·ÖËÙ¶ÈÔ½´ó£¬Ôò¦ÈԽС£¬¹Ê¦È×îСֵΪ¦Èm=45¡ã£¬
´ËÇé¾°ÏÂÔ²»¡¶ÔÓ¦µÄÔ²ÐĽÇΪ270¡ã Èçͼ2Ëùʾ£®
ÔòÈëÉäÁ£×ÓÔڴų¡ÖÐÔËÐÐ×ʱ¼äΪ
${t}_{max}=\frac{3}{4}T=\frac{3¦Ðm}{2qB}=3¦Ð¡Á1{0}^{-6}s$
µ±Á£×Ó´ÓÉϰå±ßÔµ·ÉÈë´Å³¡Ê±£¬Ôڴų¡ÖÐÔ˶¯µÄʱ¼ä×î¶Ì£¬Èçͼ3Ëùʾ![]()
¡à${t}_{min}=\frac{1}{4}T=\frac{¦Ðm}{2qB}=¦Ð¡Á1{0}^{-6}s$£®
£¨3£©ÉèÁ£×ÓÉä³öµç³¡ËÙ¶È·½ÏòÓëMN¼ä¼Ð½ÇΪ¦È£®Á£×ÓÉä³öµç³¡Ê±ËÙ¶È´óСΪ£º
$v=\frac{{v}_{0}}{sin¦È}$ ¢Ý
ÓÖÓÐÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£º
$qvB=\frac{m{v}^{2}}{R}$ ¢Þ
½âµÃ£º$R=\frac{mv}{qB}=\frac{m{v}_{0}}{qBsin¦È}$
Òò´ËÁ£×Ó½øÈë´Å³¡µãÓëÉä³ö´Å³¡µã¼ä¾àÀëΪ£º$S=2Rsin¦È=\frac{2m{v}_{0}sin¦È}{qB}=0.4m$
¿É¼û£º¾àÀëSÓëÁ£×ÓÔڴų¡ÖÐÔËÐÐËٶȵĴóСÎ޹أ¬Îª¶¨Öµ£¬½ø¶øÓÐÉä³öµãÇøÓò¿í¶È¡÷D=d=0.2m
´ð£º£¨1£©´øµçÁ£×ÓÉä³öµç³¡Ê±µÄ×î´óËÙ¶È1.41¡Á105m/s£®
£¨2£©Á£×ÓÔڴų¡ÖÐÔ˶¯µÄ×ʱ¼äΪ3¦Ð¡Á10-6sºÍ×î¶Ìʱ¼ä¦Ð¡Á10-6s£®
£¨3£©´Óµç³¡Éä³öµÄ´øµçÁ£×Ó½øÈë´Å³¡ºó´Ó´Å³¡×ó±ß½çÉä³öÇøÓòµÄ¿í¶ÈΪ0.2m£®
µãÆÀ ¿´ÆðÀ´¸´ÔÓµÄÎÊÌ⣬ֻÊÇ¿¼²ì¹Ø¼üµÄ¼¸µã£¬±¾ÌâÒª¼ÇסÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯µÄ°ë¾¶¹«Ê½ºÍÖÜÆÚ¹«Ê½£¬¼´£º$R=\frac{mv}{qB}$ $T=\frac{2¦Ðm}{qB}$£¬Äܹ»½áºÏ»Í¼¿ÉÒÔ¸ü¿ìÕÒµ½¹ØÏµÊ½£®
| A£® | ¾ùÔÈ´øµçÇò¿Ç´øµçÃܶÈΪ$\frac{{E}_{0}}{4¦Ðk}$ | |
| B£® | ͼÖÐr=1.5R | |
| C£® | ÔÚxÖáÉϸ÷µãÖÐÓÐÇÒÖ»ÓÐx=R´¦µçÊÆ×î¸ß | |
| D£® | ÇòÃæÓëÇòÐļäµçÊÆ²îΪE0R |
| A£® | a·½Ê½Îª¡°¸ß¡±µ² | B£® | b·½Ê½Îª¡°µÍ¡±µ² | C£® | c·½Ê½Îª¡°¹Ø¡±µ² | D£® | d·½Ê½Îª¡°ÖС±µ² |