ÌâÄ¿ÄÚÈÝ
20£®£¨i£©µ¯»ÉóÊÒ»´Îµ¯¿ªÊ±ÇòAµÄËÙ¶È´óС£»
£¨ii£©µ¯»Éóʶþ´ÎËø¶¨Ê±µÄµ¯ÐÔÊÆÄÜ´óС£®
·ÖÎö £¨i£©µ¯»ÉóÊÒ»´Îµ¯¿ªÇòAµÃ¹ý³ÌÖУ¬AB×é³ÉµÄϵͳ¶¯Á¿Êغ㣬ÒÔÏòÓÒΪÕý£¬Óɶ¯Á¿Êغ㶨ÂÉÁÐʽÇó½â£»
£¨ii£©µ¯»Éóʶþ´ÎËø¶¨¹ý³ÌÖУ¬AB×é³ÉµÄϵͳ¶¯Á¿Êغ㣬¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÒÔ¼°ÄÜÁ¿Êغ㶨ÂÉÁÐʽÇó½â¼´¿É£®
½â´ð ½â£º£¨i£©É赯»ÉóÊÒ»´Îµ¯¿ªÊ±ÇòAµÄËÙ¶È´óСΪv1£¬BµÄËÙ¶È´óСΪv2£¬µ¯¿ª¹ý³ÌÖУ¬AB×é³ÉµÄϵͳ¶¯Á¿Êغ㣬ÒÔÏòÓÒΪÕý£¬¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÓУº
-m1v1+m2v2=0
½âµÃ£ºv1=6m/s
£¨ii£©É赯»Éóʶþ´ÎËø¶¨Ê±£¬ABµÄ¹²Í¬ËÙ¶ÈΪv£¬µ¯ÐÔÊÆÄÜ´óСΪEP£¬¸ù¾Ý¶¯Á¿Êغ㶨Âɵãº
m1v1+m2v2=£¨m1+m2£©v
½âµÃ£ºv=4m/s
¸ù¾ÝÄÜÁ¿Êغ㶨Âɵãº
$\frac{1}{2}{m}_{1}{{v}_{1}}^{2}+\frac{1}{2}{m}_{2}{{v}_{2}}^{2}=\frac{1}{2}£¨{m}_{1}+{m}_{2}£©{v}^{2}+{E}_{P}$
½âµÃ£ºEP=0.3J
´ð£º£¨i£©µ¯»ÉóÊÒ»´Îµ¯¿ªÊ±ÇòAµÄËÙ¶È´óСΪ6m/s£»
£¨ii£©µ¯»Éóʶþ´ÎËø¶¨Ê±µÄµ¯ÐÔÊÆÄÜ´óСΪ0.3J£®
µãÆÀ ½â¾ö¸ÃÌâ¹Ø¼üÒªÄܹ»ÊìÁ·ÔËÓö¯Á¿Êغ㶨ÂɺÍÄÜÁ¿Êغ㶨ÂÉÁгöµÈʽÇó½â£¬ÒªÇóͬѧÃÇÄÜÕýÈ··ÖÎöÎïÌåµÄÊÜÁ¦Çé¿ö£¬×¢ÒâʹÓö¯Á¿Êغ㶨ÂÉʱҪ¹æ¶¨Õý·½Ïò£¬ÄѶÈÊÊÖУ®
| A£® | ´øµçÒºÌåÐýת¿ìÂýÖ»Óë´Å³¡Ç¿ÈõÓйØÓëµçÁ÷´óСÎÞ¹Ø | |
| B£® | Èç°´ÈçͼËùʾ·ÅÖ㬴ÓÉÏÍùÏ¿´ÒºÌ彫˳ʱÕëÐýת | |
| C£® | Èç°´ÈçͼËùʾ·ÅÖ㬴ÓÉÏÍùÏ¿´ÒºÌå½«ÄæÊ±ÕëÐýת | |
| D£® | Èç¹û°ÑÁ½µç¼«µÄÕý¡¢¸º¼«½»»»ÔòÒºÌåÐýת·½Ïò²»±ä |
| A£® | СÇòÇ¡ºÃ¾¹ýPµã | |
| B£® | СÇòµÄλÖÃÔÚPµãÏ·½ | |
| C£® | СÇòµÄλÖÃÔÚPµãÉÏ·½ | |
| D£® | ×èÁ¦´óС²»È·¶¨£¬ÎÞ·¨ÅжÏСÇòµÄλÖÃÊÇÔÚPµãµÄÉÏ·½»¹ÊÇÏ·½ |
| A£® | AÖ»Êܵ½ÖØÁ¦ºÍBµÄÖ§³ÖÁ¦µÄ×÷Óà | B£® | A¶ÔBµÄѹÁ¦µÈÓÚAÊܵ½µÄÖØÁ¦ | ||
| C£® | Ï»¬¹ý³ÌÖÐB¶ÔA×ö¸º¹¦ | D£® | Ï»¬¹ý³ÌAµÄ»úеÄÜÊØºã |
| A£® | ͬ²½ÎÀÐÇ´¦ÓÚÆ½ºâ״̬ | B£® | ͬ²½ÎÀÐǵÄËÙ¶ÈÊDz»±äµÄ | ||
| C£® | ͬ²½ÎÀÐǵĸ߶ÈÊÇÒ»¶¨µÄ | D£® | ÏßËÙ¶ÈÓ¦´óÓÚµÚÒ»ÓîÖæËÙ¶È |
| A£® | x1£ºx2£ºx3=$\sqrt{3}$£º1£º2 | B£® | x1£ºx2£ºx3=$\sqrt{3}$£º2£º1 | C£® | x1£ºx2£ºx3=1£º2£º$\sqrt{3}$ | D£® | x1£ºx2£ºx3=2£º1£º$\sqrt{3}$ |